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Abstract

A two-dimensional energy balance model is coupled to a multi-layer snow model
in order to simulate the mass balance of the Morteratsch glacier (Switzerland)
for the period from 1983 to 2008. The implementation of the snow model en-
ables investigation of the impact of subsurface processes, like refreezing, on
the surface mass balance. Meteorological input for the model is derived from
measurements at four synoptic stations in the vicinity of the glacier. Weather
and mass balance observations on the glacier are used for tuning and validat-
ing purposes. The modeled and measured mass balance agree reasonably well.
Discrepancies are, besides modeling inaccuracies, most likely caused by uncer-
tainties in the albedo, snow drift and the location of the stake observations.
The computed mean specific mass balance is –0.78 m w.e. a−1. Refreezing of
melt and rain water below the surface contributes on average 0.41 m w.e. a−1

to the mass balance. Furthermore, the mean modeled internal accumulation is
0.04 m w.e. a−1, corresponding to 3.5% of the mean accumulation by refreezing
and snow fall. Climate sensitivity experiments show that an air temperature
deviation of 1 ◦C causes a shift in the specific mass balance of 0.63 m w.e. a−1,
while a deviation of the precipitation of 10% results in a change of the mass
balance of 0.16 m w.e. a−1. The model underestimates the surface temperature
on average by 1.7 ◦C, which is also reflected in the calculated snow temperature
profile. The surface temperature is shown to be very sensitive to perturbations
in the turbulent fluxes, which leads us to believe that turbulent heat transport
towards the surface is currently underestimated.
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Chapter 1

Introduction

Currently, about 10% of the Earth’s surface is covered by glacier ice. Small
glaciers outside the great ice sheets on Greenland and Antarctica cover an area
of about 525×103 km2, corresponding to only 4% of the total land ice area
(Ohmura, 2004; Dyurgerov and Meier, 2005). Nevertheless, melting of these
small glaciers (figure 1.1) may have contributed to as much as 30% of sea level
rise in the 20th century (Meier, 1984; IPCC, 2007). Small glaciers are mostly sit-
uated in rather warm and wet areas, resulting in a higher sensitivity to changes
in climate (Oerlemans and Fortuin, 1992).

The relationship between climate variations and the volume and mass bal-
ance of glaciers has been studied extensively in the past. Long time-series of
mass balance data have proven useful in detecting global climate change and in
the explanation of the rising sea level (Kuhn, 1993). The mass balance has been
acknowledged as the critical link between glaciers and climate (Meier, 1965)
and the importance of glacier monitoring is recognized by the Intergovernmen-
tal Panel on Climate Change (IPCC) and the World Glacier Monitoring Service
(WGMS). In order to simulate the mass balance, several types of models have
been developed that relate the mass balance to climate.

Simple degree-day ablation models relate the melt rate to the mean summer
air temperature in order to estimate the annual ablation (Braithwaite, 1995;
Hock, 1999). More sophisticated mass balance models evaluate the energy bal-
ance of a glacier surface in an attempt to calculate the energy involved in melting
(e.g Arnold et al., 1996; Klok and Oerlemans, 2002; Bougamont et al., 2005).
Two-dimensional mass balance models enable calculation of spatial variations in
the surface energy fluxes and the mass balance. Several parameters have been
shown to have a significant impact on the mass balance. E.g. various studies
have demonstrated the importance of accurate simulation of the surface albedo
(Oerlemans and Hoogendoorn, 1989; Munro, 1991; Van de Wal et al., 1992).

An other important aspect is to take into account processes acting below
the surface. Snow models of varying complexity have been developed in the
past to simulate subsurface properties, such as temperature, density and the
liquid water content (Jordan, 1991; Greuell and Konzelmann, 1994; Bartelt
and Lehning, 2002; Tribbeck et al., 2004). Several studies have shown that the
impact of subsurface processes on the surface energy and mass balance cannot be
neglected (Rick et al., 2008; Parry et al., 2007; Janssens et al., 2000). Therefore,
a coupling between snow models and mass balance models is needed to study
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Fig. 1.1: Photograph of the glacier tongue and the recently deglaciated forefield of the
Morteratsch glacier, Switzerland (August, 2008).

the impact of density and temperature variations below the surface on the mass
balance. Of special interest is the process of refreezing of percolating water,
which adds mass to the interior of the glacier and affects the vertical profiles of
density, temperature and water content.

For this study, a distributed energy balance model is developed along the
lines presented by Klok and Oerlemans (2002). This model is coupled to a
multi-layer snow model, based on a routine described by Greuell and Konzel-
mann (1994), in order to calculate the mass balance of the Morteratsch glacier
(Switzerland), while accounting for subsurface processes that affect the energy
and mass balance at the surface. The energy balance model computes the sur-
face temperature, for which all the energy fluxes at the surface are in balance.
However, the surface temperature cannot be raised above the melting point of
ice (0 ◦C), which may result in a positive energy budget. The excess energy
is used for melting of the surface layer. The resulting amount of melt water is
used as input for the snow model, which simulates percolation, storage, refreez-
ing and runoff of the water content, while accounting for processes that affect
the mass balance either directly or indirectly. Below the surface, accumulation
of refrozen water and variations in the subglacial heat flux, which is determined
by the distribution of temperature and density, have a significant impact on the
mass balance.

Measurements of climate variables around the glacier have been used to cal-
culate input for the model on a two-dimensional grid. On the other hand, the
Institute for Marine and Atmospheric research Utrecht (IMAU) has been op-
erating automatic weather stations to measure ice melt, radiative fluxes and
weather variables on the glacier. Additionally, stake readings provided infor-
mation about snow properties and surface melting. The on-glacier observations
allowed for tuning and validation of the model.

The evolution of the mass balance is simulated over the period from 1983
to 2008. Several experiments are performed to test the sensitivity of the mass
balance and snow properties to perturbations of the model parameters and
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to changes in climate variables (temperature and precipitation). Furthermore,
additional simulations have been done to investigate the impact of refreezing and
the influence of darkening of the ice by debris deposition on the mass balance.

The observations on and around the glacier and the treatment of the data
to derive input for the model are described in chapter 2. Chapter 3 gives a
theoretical and numerical description of the energy balance model and the snow
model. The model results are presented and discussed in chapter 4. Finally, the
main conclusions and suggestions for further research are given in chapter 5.
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Chapter 2

Observations & data
treatment

2.1 The Morteratsch area

The Morteratsch glacier is situated in the Bündner Alps in the southeast of
Switzerland, close to the Italian border (46◦24’N, 9◦56’E). The valley glacier
originates at the northern slopes of the high mountains of the Bernina Range:
Piz Bernina (4049 m a.s.l.), Crast Aguzza (3869 m a.s.l.), Piz Zupo (3996 m
a.s.l.), Bella Vista (3922 m a.s.l.), Piz Palü (3901 m a.s.l.) and Piz Cambrena
(3602 m a.s.l.). The Pers glacier and the Morteratsch glacier flow around a rock
formation, called Isla Persa (’Lost Isle’), and right below this rock formation, the
two glaciers join and continue as one about 2 km from the snout. In this study,
the Pers glacier and the Morteratsch glacier are treated as one, the Morteratsch
glacier. With a length of 7 km and an area of about 17 km2, the Morteratsch
glacier is the largest glacier of the Bernina Range. However, over the last few
decades, the glacier tongue has been retreating with an increasing rate of up to
30 meter per year, resulting in a total retreat of about 2 km since the start of
the length record in 1878. The large side moraines are still an indication of the
glacier thickness at the end of the little ice age in the 19th century, as shown
in figure 2.1(c). The Morteratsch glacier is classified as a temperate glacier.
Temperate glaciers are at melting point (0 ◦C) throughout their mass, except
for the layers near the surface. Especially in winter, snow temperatures near
the surface may drop to values well below freezing point.

The climatological conditions in the Morteratsch area are strongly variable
and they are not only determined by the large scale conditions, but also by
processes acting on a smaller scale. The glacier surface itself has a marked in-
fluence on the local climate, for example when a glacier wind is established after
cooling of the air by the glacier surface. Figure 2.2 shows the wind speed versus
the wind direction at the glacier tongue. This figure clearly shows that either a
downslope glacier wind (wind direction around 180◦) or an upslope valley wind
(wind direction around 360◦) is present most of time. Rapid changes in temper-
ature, wind and cloudiness are not exceptional in this region and they provide
a great challenge to researchers to measure, describe and model the associated
processes in a proper way. Over the last few decades, significant progress has
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(a) (b)

(c)

(d)

Fig. 2.1: Photographs of the glacier tongue (a), the AWS at station M1 (b), a large
side moraine (c) and the accumulation zone on the northern slopes of the Piz Palü (d).
Photographs are taken in August 2008. Note the significant darkening of the ice at the
tongue near the side moraines.
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2.2. OBSERVATIONS

Fig. 2.2: Observed half-hourly mean wind speed versus the wind direction at the glacier
tongue (2100 m a.s.l.) for the period from 8 July 1998 to 14 May 2007. A wind direction
of 180◦ corresponds to a southward down-glacier flow.

been made in the understanding of the physics behind the processes that de-
termine the mass and energy balance at the surface. Very useful formulations
and parameterizations have been developed, often supported by extensive mea-
surements. These expressions are at the basis of the model developed for this
study, since they enable us to calculate the different components of the mass
and energy budget using measurements of climatic variables around the glacier.

The equilibrium line is a term used to describe the altitude where the ac-
cumulation and ablation are in balance on average over a year. Since the equi-
librium line is directly reacting on changes in precipitation and temperature, it
is often regarded as an indicator for climate change. At the end of the abla-
tion season, the equilibrium line altitude can roughly be estimated as the height
above which snow is still present. The rather steep and rugged terrain above the
equilibrium line is called the accumulation zone (positive mass balance) (figure
2.1(d)). On the other hand, the area below the equilibrium line is known as the
ablation zone (negative mass balance) (figure 2.1(a)). Super-imposed ice forma-
tion in the accumulation zone may lead to an overestimation of the equilibrium
line altitude by visual inspection. At the Morteratsch glacier the equilibrium
line is located at a height of approximately 3000 m a.s.l..

2.2 Observations

As stated before, weather conditions in mountainous (and glacierized) regions,
like the Morteratsch area, can be highly variable in space and time. Therefore,
accurate input data of the local weather conditions on the glacier are needed to
force the model. Measurements of climate variables around the glacier contain
valuable information on the large-scale weather conditions. Long time-series
observations (since 1981) are available from multiple stations in the vicinity of
the glacier. On the other hand, measurements of weather variables on the glacier
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started in 1995 and are carried out at a single location. The data gathered on
the glacier contain more accurate information on the local glacier climate. In
spite of this the on-glacier measurements are not used as input for the model,
since the shorter time-series observations and the unavailability of climatic data
at multiple locations do not allow for determination of reliable input values for
the weather conditions on the grid. Instead, the aforementioned observations
of the weather variables at stations in the vicinity of the glacier are used to
acquire the desired model input. Furthermore, measurements of energy fluxes,
snow properties and weather variables on the glacier are used for tuning and
validating purposes.

2.2.1 Measurements around the glacier

Meteorological data from four synoptic weather stations in the vicinity of the
glacier were provided by MeteoSchweiz. A summary of the measured variables
is given in table 2.1. The geographic location and altitude of the measurement
sites is shown in figure 2.3. A complete set of data is available since 1983, except
for the daily precipitation measurements at Pontresina, which are available since
1989. Therefore, we start our simulations in 1983. Data gathered during the
last three months prior to the start of the simulation are used as input for an
initialization run. Pressure observations are not available during these three
months and therefore an estimated average value is taken as input.

2.2.2 Measurements on the glacier

The Institute for Marine and Atmospheric research Utrecht (IMAU) has been
measuring weather variables and ice melt at five different locations since 1995
in order to improve our understanding of the local glacier climate and to study
its connection with large scale climate variations. In this study, measurements
on the glacier are very important for validation and tuning of the model results.
The geographic location of the measurement sites on the glacier is shown in
figure 2.4. The first automatic weather station (AWS) was set-up at the glacier
tongue at location M1 (±2110 m a.s.l.) in October 1995 (figure 2.1(b)). In July
1998, the sensors were replaced and new devices, measuring longwave radiation,
air pressure and relative humidity, were installed. In order to maintain an
approximately constant altitude, the measurement sites have been displaced
upstream over short distances every 2 to 3 years. In 2007, the AWS at M1 was
getting close to the retreating glacier terminus and the station was therefore
moved up over a larger distance to an altitude of around 2300 m a.s.l.. In the
present study, only measurements of the AWS at the initial location on the
glacier (M1) are used for evaluation. An overview of the observations on the
glacier is given in table 2.2.

Stake measurements provide insight in the specific mass balance in the abla-
tion zone. On the Morteratsch glacier, readings of the stakes are done manually
about four times a year. Another way to measure the surface height is to
make use of a sonic ranger. Sonic rangers simply measure the distance between
the device and the glacier surface. Unlike the stake readings, sonic rangers
give a more detailed evolution of the surface height, which makes it possible
to discriminate between individual snow and melting events. The temperature
profile and mean density of the snow pack are measured about 4 times a year
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Table 2.1: Observations at stations around the glacier used in this study. The syn-
optic stations are located at Corvatsch (C), Samedan (S), Bernina-Curtinatsch (BC) and
Pontresina (P).

Variable Station Time resolution Starting date

Incoming shortwave radiation C 10 min 01-01-1981
S 10 min 01-01-1981

Air pressure C 10 min 01-01-1983
S 10 min 01-01-1983

Air temperature C 10 min 01-01-1981
S 10 min 01-01-1981

Relative humidity C 10 min 13-05-1981
S 10 min 13-05-1981

Precipitation BC 1 day 01-10-1989
P 1 day 01-01-1981
S 10 min 01-01-1981

Fig. 2.3: Map of the Morteratsch glacier and its surroundings, showing the location of
the synoptic weather stations at Pontresina (1774 m a.s.l.), Bernina Curtinatsch (2095
m a.s.l.), Samedan (1705 m a.s.l.) and Corvatsch (3315 m a.s.l.). The thick black line
represents the outline of the glacier [source: Klok and Oerlemans (2002)].
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Table 2.2: Overview of the observations on the glacier used in this study.

Variable Stations Time resolution Starting date

Incoming shortwave radiation M1 30 min 01-10-1995
Outgoing shortwave radiation M1 30 min 01-10-1995
Incoming longwave radiation M1 30 min 08-07-1998
Outgoing longwave radiation M1 30 min 08-07-1998
Air pressure M1 30 min 08-07-1998
Air temperature M1 30 min 01-10-1995
Relative humidity M1 30 min 08-07-1998
Ice melt / snow depth (stakes) M1 irregularly 16-12-1995

M2 irregularly 21-10-2005
M3 irregularly 02-08-1999
M4 irregularly 02-08-1999
M5 irregularly 20-10-2000

Ice melt (sonic ranger) M1 30 min 01-10-1995
Snow depth (sonic ranger) M1 30 min 01-10-1995
Snow temperatures M1 irregularly 19-11-1997
Snow density M1 irregularly 16-12-1995

Fig. 2.4: Map of the Morteratsch glacier. The thick black line marks the boundaries
of the glacier and the red dots indicate the locations of the IMAU measurement sites at
M1 (2110 m a.s.l.), M2 (2270 m a.s.l.), M3 (2500 m a.s.l.), M4 (2700 m a.s.l.) and M5
(2910 m a.s.l.) [source: Swisstopo].

10



2.3. MODEL INPUT

Table 2.3: Mean observations at M1 over the period from 8 July 1998 to 14 May 2007.
Tatm is the air temperature, RH is the relative humidity, pair is the air pressure, SWin

is the incoming shortwave radiation, α is the albedo, LWin is the incoming longwave
radiation and LWout is the outgoing longwave radiation. Values for the extrema and the
standard deviation are based on half-hourly averages, except for the wind speed and the
albedo, which are based on daily averages. The albedo is determined as the ratio of the
outgoing and incoming solar radiation; the mean measured snow depth is derived from
measurements with the sonic ranger.

Variable Mean Minimum Maximum Standard Deviation

Tatm (◦C) 1.5 -21.9 19.1 7.1
RH (%) 62.5 1.9 100.0 19.4
pair (mbar) 788.1 753.4 807.1 7.3
Wind speed (m s−1) 3.0 0.0 15.8 1.7
SWin (W m−2) 136.9 0.0 1239.2 237.5
α 0.60 0.09 0.93 0.33
LWin (W m−2) 252.9 110.5 376.6 55.1
LWout (W m−2) 294.3 181.6 345.6 27.9
Snow depth (m) 0.32 0.00 1.99 0.43

by digging a snow pit and taking snow samples at different depths. Averaged
values of the observations at M1 over the period from October 1995 to May
2007 are given in table 2.3. More information on the instruments can be found
in Oerlemans and Knap (1998) and Oerlemans (2000a). In addition, images
of the instruments and the field location can be found on the project website:
http://www.phys.uu.nl/~oerlemns/site_Mort/morteratsch.html

2.3 Model input

In order to obtain input values for the model, the measurements at Corvatsch
and Samedan are combined and projected onto the grid. Regarding the precip-
itation estimates, daily mean values at Pontresina and Bernina-Curtinatsch are
combined with half-hourly observations at Samedan.

Section 2.3.1 discusses the use of a Digital Elevation Model (DEM) to de-
termine the surface topography and related quantities and to specify the model
grid. In section 2.3.2, a description is given of how outliers in the measured
data around the glacier are removed and how missing values are estimated by
inter- and extrapolation. Finally, section 2.3.3 summarizes how measured cli-
mate variables are interpolated with height and used to derive the necessary
model input on the grid.

2.3.1 Surface topography & grid

Calculations in the model are carried out on a regular grid with an equal grid
spacing in the east-west and north-south direction. All the processes that affect
the energy and mass balance are evaluated on the grid after every modeled
time-step. Additionally, the snow model calculates subsurface properties in up
to 11 vertical layers with varying depths, as explained in section 3.2.

The height profile of the glacier and the surrounding terrain is derived from
a Digital Elevation Model (DEM) provided by the Bundesamt für Landesto-
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Fig. 2.5: Height profile (a) and the absolute slope (b) of the glacier. Heights are
indicated in meters above sea level (m a.s.l.) and the absolute slope is given as a percentage
(100% ≡ 45◦).

pographie of Switzerland. The DEM not only provides altitudinal grid points,
it also enables calculation of the slope and aspect of the grid cells. A 2D-height
profile of the ice grid and the slope is given in figure 2.5. The DEM contains
a total of 167241 grid points covering an area of 105 km2. Grid points covered
by ice have been selected manually, resulting in a total of 29240 ice grid cells.
It should be noted that not all the selected ice grid cells are actually covered
by ice, especially in the accumulation zone. However, snow falling on these grid
cells is most likely transported to nearby ice-covered grid cells by wind-driven
snow drift or avalanches. It is therefore a reasonable assumption to treat these
ice-free cells as part of the glacier. The resolution of the model grid equals the
DEM resolution, so no resampling of the input data is needed.

The model computes the surface energy balance (equation (3.2)) and mass
balance (equation (3.1)) only at the grid cells covered by the glacier. Elevation
data of grid points on the glacier are used to derive height-dependent input
parameters, as described in section 2.3.3. The elevation data of terrain sur-
rounding the glacier are used in the calculation of the terrain parameters and
shading (section 3.2.2).

All the grid cells are treated independently in the model with the only ex-
ception being the interaction between cells occurring in the calculation of the
amount of solar radiation that is reflected by the surrounding terrain before
reaching the grid cell. In the model, water that has run off from a grid cell
is not added to the water content of the neighboring cells. Melt water tracks
at the surface are mainly determined by the surface slope, which may vary
strongly over short distances (figure 2.5(b)). With the time-independent sur-
face topography and the DEM resolution of 25 meters we were not able to detect
small-scale temporal and spatial variations in the surface slope. The presence of
crevasses (due to stretching of the ice) plays an important role in the transport
of melt water into the glacier. However, simulating this transport requires a
very detailed surface profile and is beyond the scope of this study.

12



2.3. MODEL INPUT

2.3.2 Data treatment

In general, the relative amount of data from stations around the glacier that
is incorrect or missing is very small. No gaps larger than a few days are con-
tained in the data sets of the relative humidity, precipitation, air temperature
and incoming shortwave radiation. The pressure observations at Corvatsch and
Samedan are in some cases absent for a longer period (up to 90 days). In most
cases, the irregularities in the measurements could be solved using standard
techniques, like interpolation between recent correct values. The method used
to derive values for missing or incorrect data is dependent on the amount of
successively missing data. Small gaps in the data sets are filled by linear inter-
polation between correct values. Generally, if measurements are absent at either
Corvatsch or Samedan for more than one day, then data from the other station
are used in combination with the height gradient of the measured variable of the
previous day. If measurements are missing at both stations, then previous day
values are used. The strategy described above is used to correct measurements
of air temperature and relative humidity. Gaps in the air pressure measure-
ments are always filled by linear interpolation, even in case of a long period of
missing data. Precipitation data at Samedan are interpolated when less than
a day of measurements is missing. In case of a larger interruption, previous
day values are taken. Finally, shortwave radiation data are also interpolated for
gaps smaller than a few hours. However, in order to preserve the daily pattern,
large gaps are filled by means of theoretically derived values for the insolation
and the atmospheric transmissivity.

2.3.3 Input values on the grid

Some of the input variables for the model are directly measured at the synoptic
stations around the glacier. In that case, only altitudinal corrections have to be
applied to the measured values. However, a different approach has to be used
when the desired model input variables are not measured directly (e.g. cloud
cover). These input variables need to be estimated using the available data.

Air temperature & relative humidity

The atmospheric temperature Tatm plays an important role in the calculation
of the energy budget. First of all, the incoming longwave radiation is strongly
dependent on the temperature of the sky (equation (3.20)). Furthermore, the
turbulent fluxes (equation (3.26) and (3.27)) and the heat supplied by rain water
(equation (3.29)) are also depending on the atmospheric temperature. Relative
humidity estimates are used in the computation of the turbulent fluxes and the
incoming longwave radiation by means of the vapor pressure. Estimates of the
potential temperature are needed to compute the potential temperature lapse
rate (γL), which is used in the calculation of the katabatic exchange coefficient
(equation (3.28)). The air temperature (Tatm), relative humidity (RH) and
potential temperature (θ) are assumed to be linearly dependent on altitude.
Hence, the grid values of these parameters are determined by interpolating the
measured values at Corvatsch and Samedan linearly with height.
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Air pressure & density

Grid values of the air pressure are required to calculate the transmission coeffi-
cient for Rayleigh scattering τR and gas absorption τg (equation (3.8)). The air
pressure pair on the grid can be computed using the following relation:

pair = pref

(
θ

Tatm

)Rd
cp

, (2.1)

where pref is a reference pressure, Rd is the gas constant for dry air and cp
is the specific heat of dry air (table 3.2). The air pressure is calculated using
interpolated values of the air temperature (Tatm) and the potential temperature
(θ).

The air density ρair is needed in the calculation of the turbulent fluxes in
equation (3.26) and (3.27). On the grid, ρair can be determined using the ideal
gas law:

ρair =
pair

RdTatm
. (2.2)

Atmospheric vapor pressure

Values of the atmospheric vapor pressure ea are required to determine the la-
tent heat flux (equation (3.27)) and the incoming longwave radiation (equation
(3.22)). ea can be described as a function of the air pressure and specific humid-
ity (q), assuming that q << 1. In addition, the specific humidity is dependent
on the specific humidity of saturated air qs which is in turn a function of the
saturation vapor pressure esurf :

ea =
q pair
εR

(2.3)

q =
RH

100%
qs (2.4)

qs =
esurf εR
pair

(2.5)

esurf = p0 exp
[
Ls,v
Rv

(
1

273.15
− 1
Tatm

)]
, (2.6)

where Rv is the gas constant for water vapor, εR is the ratio of Rd and Rv, p0

denotes the saturation vapor pressure at 273.15 K and Ls,v is the latent heat
of sublimation or vaporization (table 3.2). Equation (2.6) relates the saturation
vapor pressure to the air temperature and is known as the Clausius Clapeyron
equation.

Cloud cover

The cloud cover has a significant impact on the shortwave and longwave compo-
nents of the energy budget. However, no direct measurements of the cloud frac-
tion are available. Therefore, measurements of the insolation at Corvatsch were
compared to the theoretical clear-sky radiation (equation (3.4) with τcl = 1) in
order to calculate the cloud transmissivity (Klok and Oerlemans, 2002). The
cloud fraction is then computed using a relation suggested by Greuell et al.
(1997) (equation (3.14)). Interpolation of the cloud cover is necessary during
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2.3. MODEL INPUT

Fig. 2.6: Incoming longwave radiation (LWin) at M1 as a function of the atmospheric
temperature. The black lines represent the two boundaries (0 and 100 % cloudiness)
between which the cloud fraction is linearly interpolated

the nights, since the absence of sun light hinders the determination of the cloud
transmissivity using the method described above. Another problem is that the
cloud cover estimate is prone to a large uncertainty when the measured incom-
ing shortwave flux at Corvatsch is small. To account for this, the cloud fraction
during the nights is interpolated between the value one hour before sunset and
one hour after sunrise. However, especially in winter, daily fluctuations in the
cloud cover are rarely represented in the calculated cloud cover. Therefore, we
have chosen to compute a 24-hour running mean value, which is used as input
for the model.

Additionally, the cloud fraction is also estimated using measurements from
the AWS at M1. This is done by assuming that the incoming long wave radi-
ation at a certain atmospheric temperature is linearly dependent on the cloud
cover (Van den Broeke et al., 2004, 2006; Kuipers Munneke et al., 2008). Rela-
tively high values of the measured incoming longwave radiation are associated
with a large cloud cover, while low values are associated with clear-sky condi-
tions. In order to scale the cloud fraction, two boundaries need to be specified
between which the cloud cover is interpolated. The upper boundary will rep-
resent overcast conditions and the lower boundary is associated with clear-sky
conditions, as shown in figure 2.6. The black line representing cloudy conditions
is determined theoretically, using the Stefan-Boltzmann law (equation (3.20)),
and thus assuming that the sky emissivity ε is equal to 1. In order to determine
the lower black line, the incoming longwave radiation is binned in 1 degree K
bins before fitting a polynomial least-square fitting curve through the lowest
5% of the data. Finally, the cloud fraction is computed by linear interpolation
between the two black lines. The cloud cover estimates from the measurements
at Corvatsch are used as input for the model, because the cloud fraction can be
determined for the whole simulation period since 1983. Cloud cover estimates,
derived from measurements at station M1, are more reliable (also values during
nighttime), but they do not cover the entire simulation period. Therefore, these
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Fig. 2.7: Snow to rain transition as a function of air temperature showing the snow
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estimates are only used for comparison purposes.

Precipitation

The model distinguishes between two types of precipitation: snow fall and rain
fall. The amount of precipitation is derived from daily measurements at Pon-
tresina and Bernina-Curtinatsch in combination with half-hourly values from
Samedan to capture diurnal variations. In mountainous areas, the precipitation
is generally not constant with height, therefore, a precipitation gradient γp is
introduced. With this gradient and the mean precipitation between Pontresina
and Bernina-Curtinatsch, the precipitation can be calculated for the entire grid.
Nevertheless, the measurements contain no information on the type of precipi-
tation. It is clear that the precipitation type is related to the air temperature.
Therefore, a threshold air temperature Ts/r is introduced as the temperature
above which rain fall is most likely and below which snow fall occurs most of
the time. Typically, Ts/r ranges between 1 ◦C and 2 ◦C. Clearly, the transition
from snow to rain does not always occur at the same temperature. To account
for this in the model, we assume that between Ts/r − 1 ◦C and Ts/r + 1 ◦C, the
snow fraction decreases gradually, while the rain fraction increases, as depicted
in figure 2.7. Below Ts/r − 1 ◦C precipitation is always snow, above Ts/r + 1 ◦C
all precipitation is rain. The amount of rain fall and snow fall (in meters water
or snow) between Ts/r − 1 ◦C and Ts/r + 1 ◦C is calculated using the following
expressions:

rain = P

[
Tatm − Ts/r + 1

2

]
(2.7)

snow = P

[
Ts/r − Tatm + 1

2

]
ρw

ρfrsnow
, (2.8)

where P is the amount of precipitation (m w.e.), ρfrsnow is the density of fresh
snow and ρw is the density of water. Variations in the snow accumulation have
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a direct impact on the mass balance. However, estimates of the precipitation
on the grid are quite inaccurate, partly due to uncertainties in the precipitation
gradient. Because of the indefinite nature of γp, this parameter has been used
to tune the height dependence of the mass balance in order to achieve a good
agreement between model results and measurements as described in section
3.2.3.

Wind properties

Wind speed and wind direction are additionally observed quantities at measure-
ment site M1. However, wind properties are not needed as input for the model,
since all the energy fluxes are formulated in such a way that they do not depend
on the wind speed and direction. Formulations of the turbulent fluxes are often
based on the Monin-Obukhov similarity theory, in which the fluxes are assumed
to be related to the mean gradients of the wind speed, potential temperature
and specific humidity. However, simulation of the wind speed in mountainous
regions is complicated, due to the strongly variable nature of the wind proper-
ties. Oerlemans and Grisogono (2002) managed to develop parameterizations
independent of the vertical wind profile (see equations (3.26) and (3.27)), which
enabled us to calculate the turbulent fluxes with air temperature and relative
humidity measurements at the stations around the glacier.
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Chapter 3

Model description

The main goal of this study is to simulate the spatial distribution and the
temporal evolution of the mass balance of the Morteratsch glacier for the period
from 1983 to 2008, taking into account processes acting below the glacier surface.
In order to achieve this, a two dimensional model has been developed along the
lines presented by Klok and Oerlemans (2002), which evaluates the evolution of
the energy balance at every ice-covered grid point. The surface energy balance
is the sum of all the fluxes that add energy to or remove energy from the surface
layer. If all the incoming and outgoing energy fluxes are known then the amount
of energy involved in melting can be computed from the energy budget.

This energy balance model is coupled to a snow model, which simulates
vertical profiles of temperature, density and melt water within the snow pack
and the underlying ten meters of ice. The implementation of a snow model is
new for this glacier and it enables us to determine the heat flux between the
surface and the underlying ice more accurately. Additionally, the mass and
energy contribution by refreezing of meltwater can be estimated with the snow
model. It will be shown that refreezing of meltwater will have a significant
effect on both the subsurface temperature and density profiles. Measurements
of meteorological variables at four locations around the glacier are used as input
for the model, as described in chapter 2. Moreover, the data measured on the
glacier are used to test and fine tune the model results.

In the next section, a theoretical description of the energy balance model
(section 3.1.1) and the snow model (section 3.1.2) is given. In section 3.2, the
numerical properties of the model are discussed, and section 3.3 summarizes
which experiments are performed with the model.

3.1 Theoretical description

The specific mass balance MB at a certain location on the glacier is defined as
the accumulated exchange of mass per unit area over a period of time, often
expressed in meters water equivalent per square meter (m w.e. m−2). It is
the sum of accumulation and ablation. In this model, MB is determined by
the amount of melt, snow fall, refreezing of melt and rain water, sublimation,
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riming and exchange of vapor through the surface:

MB =
∫ [

P + V +
QLH
Ls
−R

]
dt, (3.1)

R denotes the amount of runoff, P is the amount of precipitation, V is the mass
exchange due to vapor transport through the surface, QLH is the latent heat
flux and Ls is the latent heat of sublimation (table 3.2). Other contributing
processes, such as wind driven snow drift or avalanches, may have a significant
influence on the mass balance, but simulating the associated mass transport
is complicated and not included in the model. The runoff term R takes into
account both the effects of melting and refreezing of water below the surface.
Meltwater generated at the surface may refreeze in the snow pack, and may
therefore be exposed to melting again at a later time. In traditional mass
balance formulations (Klok and Oerlemans, 2002) water that was subtracted
from the surface mass balance at a certain time, should be added again to
the mass budget at a later time when the refrozen water is melted again. 3.1
addresses this problem by subtracting only excess melt/rain water and slush
water that leaves the firn layer (R) from the mass balance. The precipitation
term P includes both snow fall and rain fall in order to maintain mass continuity,
since (excess) rain water is also influencing the runoff term R. Percolating rain
water can be stored and frozen in the snow pack and thus contribute to the
total accumulation.

The latent heat flux QLH adds or removes a (small) layer of mass at the
surface, while the vapor flux V transports mass through the surface, causing
the subsurface density profile to change, thereby affecting the mass balance.
Energy fluxes directed towards the surface are defined positive, while fluxes
directed away from the surface are negative. The phase change from water
vapor to solid ice particles is called riming and this process is associated with
a positive latent heat flux and consequently a positive contribution to the mass
budget. A negative latent heat flux is associated with a phase change from ice
to water vapor and is called sublimation. The effects of R, V , QLH and P on
the surface mass balance are evaluated after every time step and integrated over
time to compute the specific mass balance since the start of the simulation at
a specific location on the glacier. In figure 3.1(a) an overview of the fluxes that
determine the mass budget, is given.

Mass balance data are usually derived from stake measurements on the
glacier. These stakes measure the relative surface height, which is determined
by the amount of ice melt during the ablation season, and snow accumulation
and packing of the snow during the accumulation season. Hence, the relative
surface height is affected by all the processes that change the thickness of the
glacier. On the other hand, the mass balance only includes processes that ex-
change mass between the glacier and the atmosphere or the surrounding terrain
(runoff) and is therefore a direct measure of the total mass (not the thickness)
in a column of ice.

3.1.1 Energy balance model

The surface energy balance includes all the energy fluxes acting on the surface
and is used to compute the energy involved in melting (QM ) and sublima-
tion/riming (QLH) in equation (3.1). To justify the use of the energy balance
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Fig. 3.1: Graphical representation of the fluxes that play a role in the determination of
the mass budget (a) and the energy budget (b) at the glacier surface.

for this purpose, we have to be sure that all the relevant incoming and outgoing
energy fluxes are considered in the model. The surface energy budget is given
by

QM = SWin + SWout + LWin + LWout +QLH +QSH +QG +QR, (3.2)

where SWin and SWout are the incoming and reflected solar radiation, LWin and
LWout are the incoming and outgoing longwave radiation, QSH is the sensible
heat flux, QG is the subsurface heat flux and QR is the heat supplied by rain.
The effect of the penetration of shortwave radiation in the upper snow layers has
been neglected. LWout, QLH , QSH , QG and QM are dependent on the surface
temperature. Since the surface temperature is the only unknown in equation
(3.2), this equation can be solved by finding the surface temperature for which
the right-hand side (r.h.s.) of equation (3.2) is equal to zero. This procedure is
described in section 3.2.2. The surface temperature is limited at 0 ◦C, so QM
can attain a positive (nonzero) value in order to satisfy equation (3.2). QM will
be zero when the surface temperature is below freezing point. Note that the heat
released by refreezing of meltwater is not considered in equation (3.2), because
it does not influence the surface energy balance (and thus the mass balance)
directly. However, refreezing does affect the subsurface heat flux QG due to
increasing subsurface temperatures and densities and therefore it does have an
indirect effect on the surface energy balance and thus the mass balance. The
increased firn density after refreezing is also affecting the mass balance, since
it takes more energy to melt the same ice several times, while the mass loss is
only considered once in the mass budget, as described before. The formulations
used for the fluxes that contribute to the energy budget are described in the
remaining part of this section. In figure 3.1(b) an overview of the fluxes that
determine the energy budget, is given.

Incoming shortwave radiation

The incoming solar radiation is an important source of energy at the surface.
Calculating this flux is quite complicated, since the amount of incoming short-
wave radiation impinging on a grid cell is determined by several factors:

1. Top of atmosphere radiation

2. State of the atmosphere (e.g. cloud fraction, water vapor concentration,
aerosol concentration)
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3. Topographic shading

4. Angle of incidence (orientation of the grid cell)

5. Visibility and reflectivity of the surrounding terrain

6. Visibility and diffusivity of the sky

If topographic effects (3, 4 and 5) are neglected, then the incident radiation at
the surface is given by (Oerlemans and Knap (1998))

I = I0 cos(θz) τR τg τw τas τcl, (3.3)

where I0 is the incoming radiation at the top of the atmosphere on a surface
normal to the incident solar radiation, θz is the solar zenith angle, τR, τg, τw, τas
and τcl are the transmission coefficients for Rayleigh scattering, gas absorption,
water vapor absorption, and scattering and absorption by aerosols and clouds,
respectively.

The top-of-the-atmosphere radiation is dependent on the distance between
the Earth and the Sun, which is varying throughout the year. The following
relation is used to compute I0 (Meyers and Dale, 1983):

I0 = 1353[1 + 0.034 cos(2π(d− 1)/365)], (3.4)

where d is the day number.
For surfaces without a slope the angle of incidence θ of the solar radiation is

equal to the solar zenith angle θz. In this case the cosine of the incidence angle
is given by

cos θz = sinφ sin δ + cosφ cos δ cosω, (3.5)

where φ is the latitude, δ denotes the solar declination, and ω is the hour an-
gle. Figures 3.2(a) and 3.2(b) show the daily mean extraterrestrial irradiance
impinging on a horizontal surface and the average irradiance during the day,
respectively. For arbitrarily oriented surfaces the relation for the angle of inci-
dence is different and can be written in the following form (Iqbal, 1983):

cos θ = cos s cos θz + sin s cos(ψ − γ), (3.6)

where s is the slope, ψ is the solar azimuth angle and γ is the surface azimuth
angle. Figure 3.3 shows the position of the sun relative to an inclined plane
and the related angles θ, s, ψ and γ. The solar azimuth angle ψ is used in the
computation of the terrain parameters (see section 3.2.2) and can be expressed
as a function of the solar declination (δ), the hour angle (ω) and the solar zenith
angle (θz) as follows:

ψ = arcsin
(
− cos δ sinω

sin θz

)
. (3.7)

The transmission coefficients for Rayleigh scattering and gas absorption,
τR and τg, are both a function of the air pressure and optical air mass. The
product of τR and τg is determined using the following empirical relationship
(Kondratyev, 1969; Atwater and Brown Jr, 1974):

τR τg = 1.021− 0.084
√
m(949pair × 10−5 + 0.051), (3.8)
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Fig. 3.2: Daily mean extraterrestrial irradiance on a horizontal surface (a), and extrater-
restrial irradiance during the day averaged over a year (b) as described by equation (3.3)
at a latitude of 46◦24’N.

with m the optical air mass and pair the air pressure in kPa. m is calculated
empirically after Meyers and Dale (1983) and is formulated as

m = 35
pair
psea

(
1224 cos2 θz + 1

)− 1
2 , (3.9)

where psea is the air pressure at sea level (kPa) (table 3.1).
The transmission coefficient for water vapor absorption, τw, is dependent

on the optical thickness and the amount of water in the atmosphere. τw is
computed using an expression by McDonald (1960):

τw = 1− 0.077(um)0.3, (3.10)

where u is the amount of precipitable water (cm). This term u can be expressed
as a function of the daily average dew point temperature Tdew (◦F) as follows
(Smith, 1966):

u = exp[0.1133− log(λ+ 1) + 0.0393Tdew], (3.11)

where λ is a constant, empirically derived for latitude and season, assuming a
dependence of the precipitable water on the daily average dew point tempera-
ture. An annual mean value for λ for the corresponding latitude was taken from
Smith (1966) (table 3.1).

The transmission coefficient for aerosol attenuation, τas,was computed using
the following relation by Houghton (1954):

τas = hm, (3.12)

where h is an empirical constant, which can be derived by fitting the modeled
incoming solar radiation under clear-sky conditions (τcl=1) to measurements.
Klok and Oerlemans (2002) derived values of h for Corvatsch and Samedan for
clear-sky days in the summer of 1999. They found a value for h of 0.96 for
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Fig. 3.3: The sun’s position relative to an inclined plane and the related angles s (β in
the figure), θ, ψ and γ [source: Iqbal (1983)].

Corvatsch and 0.92 for Samedan. These values where linearly interpolated with
height in our model to find values for h on the grid.

The cloud transmissivity, τcl, is calculated by taking the ratio of the mea-
sured incoming shortwave radiation to the computed clear-sky radiation (τcl=1)
for Corvatsch (Klok and Oerlemans, 2002).

The total incoming shortwave radiation on the grid can be divided into a
part which is coming directly from the sun (Idir), a part which is scattered in
the atmosphere before reaching the surface (Isky) and a part which is reflected
by the surrounding terrain before reaching the grid cell (Irefl). The direct part
of the shortwave radiation Idir can be formulated as a function of the cloud
cover, following Oerlemans (1992):

Idir = I (0.2 + 0.65(1− n)), (3.13)

where n is the fractional cloud cover. We adopted the following relation, sug-
gested by Greuell et al. (1997), to calculate the cloud cover as a function of the
transmission coefficient for clouds (τcl):

n = −0.281 + 1.20
√

0.0543 + 1.66(1− τcl). (3.14)

Values of τcl smaller than 0.352 are set to 0.352 in order to prevent the cloud
fraction from obtaining values larger than 1. During the nights, n cannot be
derived from measurements, because τcl is unknown in the absence of sun light.
Therefore, n is interpolated linearly between sunset and sunrise, before applying
the 24-hour running mean, which leads to a rather large uncertainty in the cloud
cover estimates.

It becomes important to distinguish between direct and diffuse radiation
when topographic effects are considered. When a grid cell is shaded by the sur-
rounding terrain, then the direct component of the shortwave radiation is equal
to zero, and consequently the grid cell only receives shortwave radiation coming
from the sky and the surrounding terrain. The numerical method applied to
determine which grid cells are shaded at a certain time is described in section
3.2.2. Furthermore, the angle of incidence correction (equation (3.6)) is only
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applied to the direct part of the solar radiation, since diffuse radiation is com-
ing from all directions where the sky is visible. The amount of diffuse radiation
coming from the sky Isky depends on the fraction of the overlying hemisphere
which is visible to a grid point, the so-called sky view factor Vsky (Dozier and
Frew, 1989):

Isky = I (0.8− 0.65(1− n))Vsky. (3.15)

The remainder of the overlying hemisphere (1-Vsky) is captured in the terrain
view factor Vter. This terrain view factor is needed to calculate the amount of
solar radiation that is reflected by the surrounding terrain before reaching the
grid cell (Irefl). The expression used in the model to compute this part of the
incoming shortwave radiation is (Klok and Oerlemans, 2002)

Irefl = Vter[ficeαice + (1− fice)αter] Imean, (3.16)

where fice is the fraction of the visible surrounding terrain covered by ice, αice
is the mean albedo of the glacier, αter is the albedo of the surrounding terrain,
and Imean is the amount of incoming shortwave radiation averaged over the
whole glacier after correcting for the incidence angle and shading. If snow is
present at the tongue, αter=0.5, if not, αter=0.1. The numerical procedure used
to determine the terrain parameters fice, Vsky and Vter is described in section
3.2.2.

The total incoming solar radiation SWin impinging on a grid cell is the sum
of the direct radiation, diffuse radiation from the sky and radiation reflected
towards the grid cell by the surrounding terrain:

SWin = Idir + Isky + Irefl. (3.17)

Reflected shortwave radiation

The net shortwave budget (SWin +SWout) is the major source of energy at the
surface. Since it is linearly dependent on the albedo, it can be understood that
small variations in the albedo can have a significant impact on the energy and
mass balance. The fraction of the incoming shortwave radiation that is reflected
at the surface is computed using a parameterization described by Oerlemans and
Knap (1998). In this parameterization the albedo of a grid cell at a certain time
is a function of the snow depth and the time since the last snow fall event:

α(t) = αsnow(t) + (αice − αsnow(t)) exp
(
−d
d∗

)
(3.18)

αsnow(t) = αfirn + (αfrsnow − αfirn) exp
(
s− t
t∗

)
, (3.19)

where α(t) is the glacier albedo, αsnow(t) is the albedo of snow, αice is the
albedo of ice, αfirn is the albedo of firn, αfrsnow is the albedo of fresh snow, d
is the snow depth (mm w.e.), d∗ is characteristic snow depth scale (mm w.e.),
s is the time of the last snow fall event (days), t is the actual time (days), and
t∗ is a characteristic time scale (days).

The albedo can also be expressed as a function of the snow depth and the
accumulated maximum temperatures since the last snow fall event (Brock et al.,
2000; Winther, 1993). Klok and Oerlemans (2004) concluded that the difference
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in mass balance sensitivity between these two methods is negligible. Satellite
observations show a significant decrease of the albedo of ice due to the pres-
ence of debris (Klok et al., 2003). However, capturing these variations in an
expression for the ice albedo is complicated, since the amount of debris, and
thus the ice albedo, is not clearly a function of e.g. elevation. Furthermore,
large amounts of debris can have an insulating effect, which will also have a
significant influence on the energy balance. We assumed the ice albedo prior to
the year 2002 to be 0.32, based on measurements of the shortwave fluxes at M1.
These measurements reveal a significant drop of the ice albedo for the period
from 2002 to 2008, possibly due to an increasing amount of debris deposition
(Oerlemans et al., 2009). We simulate the effect of a decreasing ice albedo on
the mass balance by manually adjusting the ice albedo during the simulation
for the years 2002-2008. The sensitivity of the mass balance to this adjustment
is investigated and the results are given in section 4.4.

Incoming longwave radiation

The net longwave budget (LWin+LWout) is on average the major sink of energy
at the surface. Nevertheless, on very warm and cloudy days, the longwave
budget can become positive. The amount of thermal radiation coming from the
sky is strongly dependent on the atmospheric temperature and the cloud cover.
The following relation is adopted to calculate the incoming longwave radiation:

LWin = εσT 4
atm, (3.20)

where ε is the emissivity of the sky, σ is the Stefan-Boltzman constant and
Tatm is the atmospheric temperature. For ε, we use a parameterization found
by Konzelmann et al. (1994), which expresses ε as a function of the fractional
cloud cover. In this parameterization, it is assumed that the contributions of
the cloudy and cloudless fraction of the sky can be separated (Kimball et al.,
1982; Oerlemans and Hoogendoorn, 1989). The total emissivity of the sky is
then given by

ε = εcs(1− nc) + εcln
c, (3.21)

where εcs is the clear-sky emissivity, c is an empirical constant, εcl is the cloud
emissivity and n is the cloud cover as in equation (3.14). For the parameter c,
we used a value which was determined by Greuell et al. (1997) and was based on
measurements on the Pasterze, Austria (table 3.1). The clear-sky emissivity can
be described as a function of the air temperature and the water vapor pressure
as follows:

εcs = 0.23 + b

(
ea
Tatm

)1/8

, (3.22)

where ea is the atmospheric water vapor pressure, which is determined using
measurements of the air temperature, relative humidity and air pressure at
Corvatsch and Samedan, as described in section 2.3.3. ea becomes increasingly
important for the longwave budget when the cloud cover is decreasing (first
term on the r.h.s. of equation (3.21)). The parameters b and εcl have been
determined by Klok and Oerlemans (2002) after fitting the measured incoming
longwave radiation at M1 in 1999 to the computed radiation (table 3.1). These
values are also used in this model.
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The main uncertainty in the calculation of the longwave budget is associated
with the cloud cover estimates, which are based on measurements of shortwave
radiation at Corvatsch (see section 2.3.3). In the model, fluctuations in the
cloud cover are smoothed by applying a 24-hour running mean and the cloud
cover is assumed to be spatially invariant over the entire glacier. Therefore, the
large fluctuations in the cloud cover, which are often seen in reality, are not
always represented in the cloud cover estimates in the model.

The method described here to determine the incoming thermal radiation has
some drawbacks. First of all, the contribution of longwave radiation coming from
the surrounding terrain and the amount of longwave radiation coming from the
sky that is blocked by the terrain, have been neglected. Furthermore, it would
have been more physically appropriate if εcl was a function of the cloud height
and cloud temperature, instead of using the fitting procedure to determine εcl
and b.

Outgoing longwave radiation

The formulation used in the model to determine the outgoing longwave radiation
is (assuming that the ice surface acts as a blackbody):

LWout = σT 4
surf , (3.23)

where Tsurf denotes the surface temperature and σ is the Stefan-Boltzmann
constant (table 3.2). Therefore, the thermal radiation emitted by the surface
is only a function of the surface temperature, which is determined internally in
the model.

Turbulent fluxes

After Reynolds decomposition and averaging of the Navier-Stokes equations,
the sensible and latent heat flux can be written as a function of the averaged
product of perturbations in the vertical wind speed (w′), potential temperature
(θ′) and specific humidity (q′) as follows:

QSH = ρair cp w′θ′ (3.24)

QLH = ρair Ls,vw′q′. (3.25)

Measuring the mean product of deviations of the wind, temperature and hu-
midity is complicated, therefore, several methods have been developed which
usually require knowledge of the surface roughness, humidity and wind speed at
two levels (e.g. Dyer, 1974; Holtslag and De Bruin, 1988). For the Morteratsch
glacier, a detailed pattern of the wind is hard to estimate, due to its variable
nature. Therefore, formulations are used, which express the turbulent fluxes
as a function of the vertical temperature and humidity gradient above the sur-
face. The nature of the surface determines to a large extent the amplitude of
these gradients. A big problem in this kind of studies is to relate measurements
of climate variables, like temperature and humidity, around the glacier to the
microclimate on the glacier.

In summer, the temperature gradients between the surface and the air can
become large, because the surface temperature is limited at 0 ◦C. At 0 ◦C, the
ice is at melting point and in that case excess energy will be used for melting
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instead of raising the temperature of the medium. As a consequence of a strong
positive temperature gradient, a glacier wind may form. A glacier wind is often
present in summer, due to cooling of the air above the sloping surface, and
may form a circulation with the valley (or large-scale) wind above the glacier
boundary layer. In case of a large temperature deficit, the turbulent exchange
of heat (sensible heat flux) to the surface can be quite substantial, depending
on the wind speed.

The turbulent exchange of moisture (latent heat flux) is dependent on the
humidity gradient. If the vapor pressure of the air is larger than the vapor
pressure at the surface, then condensation (Tsurf = 0 ◦C) or riming (Tsurf <
0 ◦C) of water vapor will heat the surface. In case of a higher vapor pressure at
the surface, evaporation or sublimation will result in surface cooling.

The expressions used for the sensible heat flux QSH and the latent heat flux
QLH are (Oerlemans and Grisogono, 2002):

QSH = ρaircp
Ckat + Cb

2
(Tatm − Tsurf ) (3.26)

QLH =

{
0.622ρairLv Ckat+Cb

2
ea−esurf

pair
if Tsurf = 0 ◦C

0.622ρairLs Ckat+Cb

2
ea−esurf

pair
if Tsurf < 0 ◦C

, (3.27)

where Ckat is the katabatic exchange coefficient, Cb is the background turbulent
exchange coefficient (table 3.1), esurf is the saturation vapor pressure at the
surface (section 2.3.3), and Lv and Ls are the latent heat of evaporation and
sublimation respectively (table 3.2). The katabatic bulk exchange coefficient is
given by

Ckat = k(Tatm − Tsurf )
√

g

T0γLPr
, (3.28)

with k an empirical constant, g the gravitational acceleration, γL the potential
temperature lapse rate , and Pr the Prandtl number.

The three equations ((3.26)-(3.28)) were obtained from an improved version
of the Prandtl model, where the height of the wind maximum is depending on
the temperature deficit at the glacier surface. Oerlemans and Grisogono (2002)
developed these parameterizations for a katabatic flow over small glaciers. The
wind field over these small glaciers is difficult to simulate properly by models, so
the turbulent fluxes are expressed as a function of air temperature and humid-
ity, which have a more robust mesoscale structure. With the above described
method, the turbulent fluxes can be determined using measurements of mete-
orological variables from nearby stations. The values for Pr and k are taken
from Oerlemans and Grisogono (2002) (table 3.1).

Ckat is associated with turbulence generated by the katabatic wind. Note
that Ckat can only be computed if the potential temperature lapse rate γL has a
positive value (stable boundary layer). Therefore, γL is not allowed to become
smaller than 0.0015 K m−1. Cb is associated with turbulence generated by the
large-scale wind or the valley wind. It is not clear how large the contribution of
this turbulence is, therefore, this parameter has been used, together with other
parameters, to calibrate the model results in such a way that measured and
modeled melt are in agreement.
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Heat supplied by rain

In the model, rainfall occurs at air temperatures above melting point. The
temperature of the rain drops is assumed to be similar to the atmospheric tem-
perature. Consequently, rainfall will always add heat to the surface energy
budget. During a heavy rainfall event in summer, this can add more than 100
W m−2 to the surface layer. However, on average over the year, the contribution
to the energy balance is only about 0.5 W m−2. Although the influence is small,
it is considered in the energy budget using the following formulation:

QR = cw ṙ (Tatm − Tsurf ) , (3.29)

where cw is the specific heat of water and ṙ is the rain rate (kg s−1).

Subsurface heat flux

The heat flux from the surface into the glacier or from the glacier to the surface
is called the subsurface heat flux. The energy flux between two layers QG is a
function of the vertical temperature gradient and is given by

QG = κ(ρ)
∂T

∂z
, (3.30)

where κ(ρ) is the effective conductivity, ρ is the density of the layer and T is
the temperature of the ice at a certain depth z, so QG is a function of ρ, T and
z. In section 3.2.2, the numerical procedure used to calculate QG at the surface
is explained in more detail. The effective conductivity describes the exchange
of energy between layers due to convection, conduction, radiation and vapor
diffusion, and is calculated using an expression by Sturm et al. (1997):

κ(ρ) = 0.138− 1.01× 10−3ρ+ 3.233× 10−6ρ2, (3.31)

where κ is expressed as a function of the firn density only. κ is in fact also de-
pendent on the temperature of the medium. However, no adequate formulation
of κ as a function of both density and temperature is available, therefore, κ is
only a function of ρ in the model.

In order to compute the subsurface heat flux, vertical profiles of the temper-
ature and density are required. These profiles are calculated on the grid after
every time step, taking into account processes, like refreezing of melt and rain
water and the gravitational densification of snow and firn. In the next section, a
summary of the snow model used to calculate these vertical profiles is given. In
addition, the coupling between the surface energy balance model and the snow
model through the subsurface heat flux is described.

3.1.2 Multi-layer snow model

In this section, a theoretical description of the multi-layer snow model is given.
In the end, the main goal is to assess how large the influence of processes acting
up to several meters below the surface is on the energy and mass balance at the
surface. Of special interest is the process of refreezing of melt and rain water.
Refreezing has a marked influence on the mass and energy balance through its
impact on the surface temperature and through the process of melting refrozen
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Table 3.1: Model parameters

Description Symbol Equations Value Units

Threshold temperature Ts/r (2.7), (2.8) tuning
Density of fresh snow ρfrsnow (2.8) tuning
Latitude φ (3.5) 46◦24’N
Sea level pressure psea (3.9) 1020 hPa
Empirical constant λ (3.11) 2.78
Empirical constant h (3.12) 0.92-0.96
Characteristic depth scale d∗ (3.18) 11 mm w.e.
Albedo of ice αice (3.18) tuning
Albedo of firn αfirn (3.19) 0.53
Albedo of fresh snow αfrsnow (3.19) 0.90
Characteristic time scale t∗ (3.19) 21.9 days
Empirical constant c (3.21) 2
Empirical constant b (3.22) 0.433
Cloud emissivity εcl (3.22) 0.984
Background exch. coeff. Cb (3.26), (3.27) tuning
Empirical constant k (3.28) 0.0004
Prandtl number Pr (3.28) 5
Runoff efficiency factor µ (3.36) 10
Runoff timescale (steep) τsteep (3.38), (3.39), (3.40) 0.05 days
Runoff timescale (flat) τhor (3.39), (3.40) 20 days
Runoff timescale (1◦) τ1◦ (3.40) 2 days
Empirical constant ν (3.43) 1
Empirical constant β (3.44) tuning
Vapor diffusion coeff. Deff (3.46) 1.1 × 10−4 m2 s−1

Precipitation gradient γp tuning
Iteration limit ∆Tacc 0.01 K
Temperature range ∆Tmax 40 K

Table 3.2: Physical constants

Description Symbol Value Units

Stefan-Boltzmann constant σ 5.67 × 10−8 W m−2 K−4

Latent heat of vaporization Lv 2.50 × 106 J kg−1

Latent heat of sublimation Ls 2.83 × 106 J kg−1

Latent heat of melting LM 3.34 × 105 J kg−1

Specific heat of water cw 4187 J kg−1 K−1

Specific heat of dry air cp 1006 J kg−1 K−1

Gravitational acceleration g 9.81 m s−2

Density of ice ρice 917 kg m−3

Triple point pressure p0 610.5 Pa
Triple point temperature T0 273.15 K
Gas constant (dry air) Rd 287 J kg−1 K−1

Gas constant (vapor) Rv 461 J kg−1 K−1
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ice. The subsurface model simulates the vertical profiles in the snow, firn and ice
layers of temperature, density and water content, and includes several physical
processes that will affect these profiles. The strategy employed for the snow
model in this study is based on a routine described by Greuell and Konzelmann
(1994). In the coming subsections, a description of the different processes that
are contained in the snow model is given.

Melt water percolation, refreezing and runoff

The two sources of water at the surface are melt water and rain water. Melt
water is produced as a consequence of a positive energy balance (QM > 0) at
the surface. The total amount of available water per time step W is then given
by:

W =
(
QM
LM

+ ṙ

)
∆t, (3.32)

where ∆t is the model time step. Note that penetration of shortwave radiation is
not included in the model, and thus all the melt water is produced at the surface.
If the density of the uppermost subsurface layer is below the density of ice, then
the water will percolate into this layer. Refreezing of the percolating water will
take place if subsurface temperatures are below freezing point. As a consequence
of refreezing, heat is added to the layer and the temperature of the layer will rise.
Furthermore, mass is added to the layer, while the thickness remains constant,
so the density of the layer will also increase after refreezing. The amount of
refreezing in a layer is limited by three factors: the layer temperature (cannot
be raised above 0◦C), the layer density (not allowed to become larger than the
density of ice), and the available amount of water.

After refreezing in the first layer, the remaining water will percolate down
into the next layer. A small amount of water is held in the layer by capillary and
adhesive forces when no refreezing takes place. This is called irreducible water.
The irreducible water content θmi can be expressed as the ratio of the mass
of the irreducible water to the total mass of the layer. We used the following
expression by Schneider and Jansson (2004) to describe this ratio as a function
of the porosity:

θmi = 0.0143 exp(3.3n) (3.33)

n = 1− ρ

ρice
, (3.34)

where n is the porosity of the layer, expressed as a function of the layer density
(excluding water). The porosity is the ratio of the pore space to the total
volume of the layer and has a value between 0 (no pore space) and 1 (100%
pore space). Equation (3.33) is an empirical relationship based on laboratory
and field measurements. This might explain why θmi is not equal to zero for a
layer with the density of ice. It can be derived that the maximum amount of
irreducible water (kg) that can be stored in a layer is equal to

mliq,max = ρi∆zi
θmi

1− θmi
, (3.35)

where ∆zi is the thickness of the ith layer. mliq,max only depends on the density
and the thickness of the layer. If the available amount of water in a layer exceeds
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mliq,max, then the remaining water content will percolate into the next layer
(’top-down’).

Once all the upper layers are filled to their maximum value with irreducible
water and the impermeable ice at the bottom of the firn layer has been reached,
the water will start filling the available pore space at the bottom. Now the
available water will start accumulating (’bottom-up’) and a so-called slush layer
is formed.

A fraction of the slush water (sw(t)) will runoff every time step following a
timescale trunoff , introduced by Zuo and Oerlemans (1996):

sw(t) = sw(t−∆t) exp
(

∆t
µ trunoff

)
(3.36)

trunoff = c1 + c2 exp(−c3 tan s) (3.37)
c1 = τsteep (3.38)
c2 = τhor − τsteep (3.39)

c3 = − ln
(
τ1◦ − τsteep
τhor − τsteep

)
(tan 1◦)−1, (3.40)

where c1, c2 and c3 are coefficients, µ is the runoff efficiency factor, s is the
surface slope, τsteep, τhor and τ1◦ are the runoff timescales for water on a steep
slope, on a 0◦ slope and on a 1◦ slope respectively. Values for τsteep, τhor and τ1◦
are taken from Reijmer and Hock (2008) (table 3.1). Runoff in the snowpack is
less efficient than runoff at the surface. The runoff rate of water in the snowpack
is controlled by the efficiency factor µ. The value taken for µ is equal to the
value used by Bougamont et al. (2005) and Reijmer and Hock (2008) (table
3.1). We assumed that accumulating slush water, which reaches the surface, is
removed instantly (trunoff=0). When the winter snow pack has disappeared,
all the water associated with melting and rain fall will runoff immediately. Note
that the amount of irreducible water is not depending on the runoff timescale.
The irreducible water content of a layer can only decrease due to a decrease of
mliq,max or due to refreezing.

In case of a cold wave penetrating into the firn layer, for example during
a clear summer night, temperatures at and below the surface may drop below
freezing point. However, refreezing of the available water (slush water + irre-
ducible water) will cause the temperature of the subsurface layers to remain
at freezing point. Primarily, the slush water will start refreezing, subsequently
followed by the irreducible water in case of absence of slush water.

Temperature profile

The evolution of the subsurface temperature profile in time is described by the
thermodynamic equation:

ρcpice

∂Ti
∂t

=
∂

∂z

(
κ(ρ)

∂T

∂z

)
+
FiLM
∆zi

−
�

�
��MiLM

∆zi
+

�
��
Qt
∆zi

, (3.41)

where cpice
is the heat capacity of ice, Ti is the temperature of the ith layer, Fi

is the refreezing rate (kg s−1), Mi is the melting rate (kg s−1), and Qt is the
shortwave flux acting on the layer. The first term on the r.h.s. of equation (3.41)
is associated with the net heat added to a layer by a vertical gradient in the
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diffusive heat flux, as described by equation (3.30). The second term represents
the heat added to a layer by refreezing. The third term is the energy loss after
melting. This term is always zero in the model, since melting occurs only at
the surface and equation (3.41) is only used to calculate temperatures below
the surface. The last term describes the heat added to a layer by a penetrating
shortwave flux. The contribution of this term is assumed to be negligible and is
therefore not taken into account in the model. Finally, the heat capacity of ice
cpice

(J kg−1 K−1) is formulated as a function of the layer temperature (Yen,
1981):

cpice = 152.2 + 7.122 Ti. (3.42)

Density profile

Density variations below the surface are described by a formulation, which is
based on an empirical relation found by Herron and Langway (1980) and later
modified and extended by Li and Zwally (2004):

∂ρi
∂t

= K0(Ti) exp
(
E(Ti)
Rd Ti

)
aνsnow

ρice − ρi
ρice

+
∂J

∂z
+

Fi
∆zi

, (3.43)

where K0 is the rate factor, E is the activation energy, Rd is the universal gas
constant (table 3.2), asnow is the annual snow accumulation (m w.e.), ν is an
empirical constant (table 3.1) and J is the water vapor flux.

The three terms on the r.h.s. of equation (3.43) represent the different pro-
cesses involved in densifying the snow pack. Packing of the snow as a conse-
quence of the pressure developed by the weight of the overlying snow, is ex-
pressed in the first term. Herron and Langway (1980) used data from multiple
sites in Greenland and Antarctica to find values for E and K0. They derived
constant values for E and K0 for snow densities smaller than 550 kg m−3 and
for snow densities larger than than 550 kg m−3. On the other hand, Zwally
and Li (2002) assumed the rate factor K0 and the activation energy E to be a
function of the layer temperature Ti:

K0(Ti) = 8.36 β |Ti − 273.15|−2.061 (3.44)

E(Ti) = 883.8 |Ti − 273.15|−0.885, (3.45)

where β is an empirical constant. These expressions were derived from grain
growth data by Jacka and Li (1994), which were used to examine the temper-
ature dependency of the activation energy and the rate factor. The constant
β is used to tune the modeled densification rate in such a way that it agrees
best with the measured density profiles. A problem with equation 3.45 is that
it increases exponentially towards higher temperatures and reaches very large
values for snow temperatures close to 0 ◦C. This would result in densification
rates, due to packing only, of up to 10 kg m−3 per half hour, which we assume
is only possible when refreezing is taken into account. Therefore, we inferred a
cut-off temperature of 272 K above which the densification rate is held constant,
as illustrated in figure 3.4.

The second term on the r.h.s. of equation (3.43) is associated with the densi-
fication of the snow pack by vapor transport. Unlike the packing process, mass
can be added or removed by vapor transport through the surface interface. At
the bottom of the snow pack, mass transport between the snow pack and the
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Fig. 3.4: Gravitational densification as a function of snow temperature (ρ = 300 kg
m−3, β = 3, asnow = 1000 mm w.e. yr−1). The black line indicates the cut-off at 272 K

impermeable ice is set to zero. The vapor fluxes between the subsurface layers
are formulated after Colbeck (1993):

J(Ti) = −Deff
p0

R2
v

Ls −Rv Ti
T 3
i

exp
[
Ls
Rv

(
1
T0
− 1
Ti

)]
∂Ti
∂z

, (3.46)

where Deff is the vapor diffusion coefficient (table 3.1), Rv is the gas constant
for water vapor and p0 and T0 are the triple-point pressure and temperature,
respectively (table 3.2). The vertical temperature gradient ∂Ti

∂z determines the
sign of J . In other words, the direction of the vapor flow between the layers is
determined by the vertical temperature profile in the snow pack (vapor flows
from higher to lower temperatures). On the other hand, the densification of
the snow layers is determined by the vertical gradient of the vapor fluxes ∂J

∂z
(equation (3.43)). If the vapor flux entering a layer is larger than the vapor
flux out of the layer, then the layer density will increase. Generally, the net
densification due to moisture transport is mainly negative in winter, due to
low surface temperatures, especially during the nights. In spring and summer,
however, the densification due to vapor transport becomes positive when the sun
and atmosphere heat the surface and refreezing releases heat in the upper snow
layers, resulting in a downward directed moisture flux. Note that the latent
heat fluxes are not responsible for vapor transport through the surface. QLH
only adds or removes mass directly at the surface by sublimation and riming.

The last term on the r.h.s. of equation (3.43) describes the impact of refreez-
ing on the densification rate of the snow pack. The mass added by refreezing is
on average of similar magnitude as the densification by gravitational packing.
However, refreezing is responsible for the fairly high peak values of densifica-
tion rate when melting occurs, while the gravitational packing rate is much less
variable, as will be shown in section 4.3.

Traditional mass balance measurements do not account for refreezing of per-
colating water in cold snow/firn and refreezing of irreducible water below the
summer surface of the previous year (Schneider and Jansson, 2004). This re-
sults in a systematic underestimation of the mass balance in the accumulation
zone. The amount of refreezing below the summer surface of the previous year
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is called internal accumulation. Note that refreezing above the summer surface
does not evade accounting in traditional mass balance observations, since den-
sity variations above the summer surface are taken into account when measuring
the mass balance for the year in question.

Coupling snow model, energy balance model and atmosphere

The subsurface heat flux QG is the only component of the surface energy bud-
get (equation (3.2)) that is affected directly by the subsurface snow properties
(density and temperature). Due to the impact of QG on the surface temper-
ature, other fluxes depending on the surface temperature (LWout, QLH , QSH
and QR) will be influenced too. E.g. after refreezing of meltwater, subsurface
temperatures will rise and consequently, the heat flux towards the surface will
increase, resulting in a higher surface temperature (Tsurf < 0 ◦C) or more melt-
ing (Tsurf = 0 ◦C). The energy balance model evaluates all the fluxes at the
surface in order to calculate the amount of energy involved in melting (QM ).
The generated melt water together with the rain water forms the input for the
snow model, which tracks the water and simulates refreezing, storage and runoff.

The vapor fluxes between the snow pack and the atmosphere are the only
direct connection between the snow model and the atmosphere. Mass exchange
between the uppermost snow layer and the air directly above the surface will
occur as a consequence of vapor transport. The turbulent transport of vapor
from the atmosphere to the surface has a direct impact on the surface energy
and mass budget and is described by the latent heat flux (equation (3.27)).

3.2 Numerical properties

In the following paragraphs, a description is given of the numerical schemes and
methods adopted to implement all the formulations described in the previous
sections into the model. Given the amount of formulations that had to be evalu-
ated per time step, the model was set up in such a way that computational costs
were minimized. This sometimes resulted in a trade off between accuracy and
simulation time, e.g. in choosing the number of subsurface layers. Furthermore,
some assumptions had to be made in order to avoid numerical inconsistencies.
The flowchart in figure 3.5 gives a summary of the set-up of the model.

3.2.1 Spatial / temporal resolution

The model time step and grid spacing are the main factors controlling the run
time of the model. The grid resolution of the model is equal to the resolution of
the DEM, which has a horizontal grid spacing of 25 meters in both the north-
south and east-west direction. Topographical parameters, like the slope of a
grid cell, can vary significantly over small distances. Therefore, a high spatial
resolution has been chosen to capture these variations on the expense of more
extensive calculations within one time step.

The model time step has been set at half an hour, which was mainly based
on the temporal resolution of the measurements. Using a 30-minute time step
enabled us to investigate the daily fluctuations in the model results.

The snow model distinguishes between ice (ρ = ρice) and snow or firn (ρ <
ρice). Depending on the snow thickness, the snow pack is divided into one,
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Initialization model:
* Define grid
* Calculate topographic parameters
* Read input (measurements)
* Determine (only) time-dependent variables

Initialization time loop:
* Read (only) time-dependent variables

Initialization grid loop:
* Determine shading
* Read values previous time step
* Determine local climate variables
* Recalculate Tsub, ρsub, w after snowfall, refreezing,
   dry snow densific. and vapour densific.

Surface energy balance (SEB):
* Calculate SWin, SWout and LWin
* Determine Tsurf & fluxes LWout, QSH, QLH, QG and QR  
   for which the SEB is satisfied
* Calculate melt energy Qm

Run the snow model

Calculate mass balance

Store variables for next time step

time 
loop

grid 
loop

Snow model:
* Recalculate Tsub after conduction
* Determine available water content 
   (melt+rain)
* Calculate percolation and refreezing of 
   produced and stored water
* Calculate storage of irreducible and slush 
   water
* Determine the amount of runoff of slush 
   and excess water
 

Fig. 3.5: Flow chart of the surface energy model coupled to the subsurface snow model

three or six layers. If the snow thickness is smaller than 0.30 meter, then the
entire snowpack is contained in one layer. In case of a snow thickness between
0.30 meter and 1.0 meter, three layers are considered, and if the snow depth
is larger than 1.0 meter, then the snow pack is divided into six layers. The
thickness of the layers is defined as a certain fraction of the total snow depth,
as depicted in figure 3.6. After a change of the number of layers, the vertical
profiles are adjusted to the new situation by redistributing the old values. In case
of a snow depth smaller than 0.05 meters, numerical artefacts after calculation
of the vertical derivatives become significant. Therefore, below this threshold
thickness, processes containing these vertical derivatives, like densification and
temperature diffusion, are no longer considered in the snow pack. In case of a
melting snow pack, the density of this layer has a value equal to the snow density
right before reaching the threshold thickness. In case of new snow (<0.05 meter),
the density is set to the density of fresh snow ρfrsnow. Underneath the snow
pack lies the impermeable ice, of which the upper ten meters are divided into 5
layers (figure 3.6).

Every time the snow thickness changes or when melting of the ice occurs,
the vertical distribution of the layer thickness, temperature, density and water
content has to be redefined. This procedure takes into account the change of the
distance to the surface and the thickness of the layer, and uses this information
to adjust profiles to the new situation.

36



3.2. NUMERICAL PROPERTIES

dzsnow < 0.3 m 0.3 m < dzsnow < 1.0 m dzsnow > 1.0 m

15%

35%

50%

5%
10%
10%

25%

25%

25%
100%

 = snow
 = ice

6.4 m

1.0 m

2.0 m

0.5 m
0.1 m

dzsnow

dzsnow

dzsnow

z

Fig. 3.6: Snow and ice layer distribution. The snow thickness is denoted by dzsnow.
Percentages indicate the fraction of the total snow depth.

3.2.2 Numerical methods

The techniques used and assumptions made during the development of the
model are described here. Numerical schemes were developed to discretize the
vertical derivatives, to determine which grid cells are shaded at a certain time
and to compute the surface temperature by means of the energy balance. These
schemes are summarized in the following paragraphs.

Discretization of vertical derivatives

Discretizing spatial derivatives becomes necessary when a finite amount of spa-
tial steps is considered. Different schemes can be used in models to approximate
continuous derivatives. The scheme used here is given in figure 3.7, which shows
the method used to calculate subsurface temperature variations after diffusion.
A similar scheme is used to calculate the densification due to vapor transport
within the snow pack (equation (3.46)), and is therefore not discussed here. The
temporal temperature fluctuations ∂Ti

∂t are depending on the vertical gradient
of the subsurface heat flux ∂QG

∂z (equation (3.41)), which again is a function
of the vertical derivative of the temperature ∂Ti

∂z (equation (3.30)). In general,
the subsurface heat fluxes are calculated at the interface between two layers
by taking the vertical derivative of the temperature of the surrounding layers
(central differencing). The derivative is calculated by dividing the temperature
difference between the layers by the distance between the mean depths of the
two layers. However, at the surface the temperature gradient cannot be defined
properly, but a subsurface heat flux at one-fourth of the first layer can be com-
puted (QG1). The subsurface heat flux at the surface QG0 is then calculated by
linearly extrapolating QG1 and QG2 to the surface, resulting in an expression
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Fig. 3.7: Numerical scheme to calculate vertical gradients of temperature and subsurface
heat fluxes.

for QG0 as a function of QG1 and QG2 :

QG0 =
1
3

(4 QG1 −QG2) . (3.47)

Once the subsurface heat fluxes are known, we can calculate the temperature
deviations by diffusion ∂Ti

∂t (equation (3.41)) by taking the vertical derivative of
QG, where the distance over which the derivative is taken is equal to the layer
thickness, except for the first layer, where this distance is equal to 3

4 times the
layer thickness.

Topographic shading and terrain factors

Shading occurs when the sun is below the local horizon. The shading module
in the model determines whether or not a ’walk’ from a grid point to the sun
was interrupted by terrain. The walk is prescribed by defining steps in the
east-west and north-south direction, depending on the azimuth angle of the sun
ψ (equation (3.7)). The model then simulates a walk from a grid point in the
direction of the sun’s position. For every step, the model determines if the
elevation angle of the walk so far is smaller than the solar elevation angle. The
walk is stopped when this condition is not met or when the end of the grid
(DEM) is reached. If the boundary of the grid is reached, then the grid cell can
see the sun and is not shaded at that time. This procedure is repeated every
time-step for all the grid points to find the shaded regions at a certain time.
The mean shaded fraction of the grid points fshad is shown in figure 3.9(d).

The procedure needed to calculate the terrain factors is quite similar to the
method described above. These terrain factors are the sky view factor Vsky,
the terrain view factor Vter and the ice fraction fice, which are used in the
calculation of the diffuse shortwave radiation coming from the sky Isky and
the incoming solar radiation reflected by the surrounding terrain Irefl. As in
the shading module, once again steps in the direction of the azimuth angle are
defined. The main difference with the shading module is that for one grid point
the model has to walk in all possible directions of the overlying hemisphere.
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Fig. 3.8: Numerical scheme used to calculate the slope s (on a normalized grid). The
slope of the centered grid cell (x,y) is calculated using an expression which is dependent
on the azimuth angle. The grid cell is surrounded by eight adjacent grid cells, therefore,
eight azimuthal regimes (45◦ each) are considered. The dashed lines mark the boundaries
between the azimuthal regimes. The altitudinal gradient between the centered grid cell
and the selected adjacent grid cell determines the slope.

This is done with two loops: one in the azimuthal direction and one from the
surface towards the surface zenith angle, using 5◦ steps in both directions. The
loop towards the surface zenith angle starts at an angle that is determined by
the slope of the grid cell. Note that the slope of a grid cell varies for different
azimuth angles.

Figure 3.8 shows how the surface slope is determined numerically. The slope
s is determined by taking the ratio of the height difference between two grid
cells and the distance between the cells. For one grid point, the terrain view
factor Vter is equal to the ratio of the amount of walks that is interrupted by
terrain to the total amount of walks from that cell, resulting in a value between
0 and 1 (figure 3.9(b)). The sky view factor Vsky is calculated as one minus
the terrain view factor, since the overlying hemisphere is either sky or terrain
(figure 3.9(a)). Finally, the ice fraction is the fraction of the visible terrain that
is covered by the glacier (figure 3.9(c)).

Computing the surface temperature

Recall that the energy balance (equation (3.2)) is used to determine the surface
temperature for which all the incoming and outgoing energy fluxes are in bal-
ance. Numerically, this can be done with an iterative procedure that converges
towards a value for Tsurf , for which equation (3.2) is satisfied. It is assumed
that the r.h.s. of equation (3.2) is continuously increasing or decreasing with
temperature (the derivative with temperature does not change sign). A bi-
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Fig. 3.9: The sky view factor (a), terrain view factor (b), ice fraction (c), and shaded
fraction (d).

section routine can then be used to find the value of Tsurf where the energy
budget is equal to zero. The following steps are taken to estimate the surface
temperature:

• Step 1: Define a starting temperature Tstart and a maximum temperature
range ∆Tmax. The energy budget at the two extremes has to be of opposite
sign, and Tstart is taken equal to Tsurf of the previous time step.

• Step 2: Compute the energy budget E(T ) at the starting temperature.

• Step 3: If E(Tstart) and the energy budget at one of the extremes are of
opposite sign, then the surface temperature for which E is zero has to lie
between Tsurf and that extreme.

• Step 4: Define a new starting temperature halfway between the two tem-
peratures associated with the opposite energy budgets of the previous step,
and repeat step 2 and 3.

• Step 5: Repeat step 4 until the temperature range ∆T is smaller than a
preset limit ∆Tacc (table 3.1).
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The resulting surface temperature has a numerical accuracy ∆Tacc. The energy
involved in melting QM is not yet included in this method, therefore, surface
temperatures higher than 273.15 K can be obtained. In that case, the surface
temperature will be set to 273.15 K and E(273.15) is calculated. The resulting
positive energy budget is then equal to the melt energy QM .

3.2.3 Calibrating the model

Without calibration, the model would not be able to produce results that are
in reasonable agreement with measured values. This is a consequence of the
imperfection of formulations and input values. To achieve a better agreement,
some model parameters are used for calibration. These tuning parameters are
usually the constants in the model that are not very well constrained. The
main focus of the calibration procedure is to tune the mass balance and its
height dependence properly. However, local effects, like wind-driven snow drift
and avalanches, which are not taken into account in the model, can have a
significant impact on the mass balance, and these uncertainties cannot be fully
corrected by changing the parameter set-up of the model.

All the energy fluxes at the surface contribute to the amount of ice melt.
However, the turbulent fluxes are probably one of the most uncertain compo-
nents, because of the generalized formulations. It is therefore justified to use the
background turbulent exchange coefficient (Cb) for calibration of the ice melt.
Furthermore, the albedo of ice (αice) is also used to tune the ice melt. The
advantage of calibrating the ice melt with either Cb or αice is that the adjust-
ment mainly affects the mass balance, while the impact on the snow properties
(density and depth) is negligible.

The snow depth, snow mass and snow density can be calibrated with several
parameters. First of all, the rate factor in the expression for the gravitational
densification (β) can be used to tune the densification rate of the snow pack.
Secondly, the density of fresh snow (ρfrsnow) can be used to match measured
mean snow density at M1 to computed values. Note that the threshold tem-
perature (Ts/r), related to the transition from snow fall to rain fall and the
height dependence of the precipitation (γp) can also be adjusted to improve the
modeled snow mass and its height dependence. However, adjusting γp or Ts/r
not only affects the snow properties. It also has a significant influence on the
amount of ice melt, as will be shown in section 4.1. Since calibrating the mass
balance is our main priority, γp and Ts/r are not used for tuning of the snow
properties. On the other hand, changing β or ρfrsnow has an impact on the
snow properties, while the effect on the ice melt is negligible.

The shape of snow flakes falling on the glacier may vary strongly from time
to time, implying that also the density of fresh snow, ρfrsnow, is not always the
same. In the model, the density of fresh snow is taken as a constant, since the
measurements reveal little information about the shape and density of the snow
flakes. ρfrsnow is tuned (together with the gravitational densification rate β)
by comparing with measurements of the mean snow density at M1. However,
the chosen value for ρfrsnow is most likely overestimated. On the other hand,
it is also likely that the modeled densification rate of the fresh snow right after
the snow fall event is underestimated. Thus, picking a larger value for ρfrsnow
compensates for the underestimation of the densification rate in the first few
days after the snow fall event in order to achieve a better agreement between
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modeled and measured mean snow densities.

3.3 Experiments

Sensitivity runs of the tuning parameters play an important role in the deter-
mination of the standard set-up for the model. Model results of the relative
surface height and snow properties are compared to measurements and devia-
tions are minimized by adjusting the tuning parameters (Cb, αice, Ts/r, ρfrsnow,
β and γp). The amplitude of the adjustments is estimated using the results of
previous sensitivity runs. Defining the optimum set-up for the model is a dif-
ficult task, mainly caused by the availability of a large amount of observations
of several variables at multiple locations on the glacier. First of all, sensitivities
are generally not constant with height, making it hard to tune height dependent
variables, like the mass balance. Secondly, the model response to perturbations
may vary from year to year, which complicated estimation of the model response
over a long simulation period. Finally, probably the most important problem is
that an adjustment of most of the tuning parameters to improve one variable,
also affects several other variables in the model results. It is therefore a great
challenge to find a standard parameter set-up for which model results are in
good agreement with all the available observations.

Several parameter sensitivity experiments are done with the model in or-
der to test the response to perturbations in the parameter set-up. Not only
the response to changes in the tuning parameters, but also the sensitivity to
changes in other parameters are investigated. Generally, the model sensitivity
to variations in the parameter set-up is calculated after running the model for
two years. However, for Ts/r, the sensitivity of the mass balance as a function of
altitude shows a strong year-to-year variability. In this case, a longer simulation
period of four years is chosen to reduce the significance of individual events on
the mass balance sensitivity. In order to determine the standard set-up of the
model, simulations over the period from 1995 to 2008 are performed to compare
the model output to observations.

The mass balance sensitivity to prescribed changes in the climate variables
(atmospheric temperature and precipitation) are also calculated. The sensitivity
of the mass balance to these variations is determined using model runs of five
years.

Additional runs are performed to investigate the importance of inclusion
of refreezing in the model and to test the effect of a constant ice albedo on
the results. Furthermore, the model is also run with the parameter set-up
proposed by Klok and Oerlemans (2002) in order to assess the impact of the
more comprehensive snow model in this study on the model set-up. Finally,
a simulation with the standard set-up of the model is done over the entire
measurement timeseries (around the glacier) extending from 1983 to 2008.

Values for the initial subsurface snowdepth, temperatures and densities are
derived from the output of an initialization run starting three months before the
actual run. For the three months prior to the start of the long run, which starts
at 1 January 1983 and ends at 16 August 2008, air pressure data at Corvatsch
and Samedan are missing and therefore estimated by taking an estimated (mean)
value. The results of all the aforementioned experiments will be addressed in
the next chapter.
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Chapter 4

Results

In this chapter, the main results of the model are presented and a comparison
with observations is made. The chapter is divided into five sections, discussing
the parameter sensitivity of the model (section 4.1), the surface mass and energy
balance (section 4.2), the subsurface variables (section 4.3), the results of some
additional experiments (section 4.4) and finally, the climate sensitivity of the
model (section 4.5).

4.1 Parameter sensitivity

Sensitivity experiments provide valuable information on the stability of the
model. Furthermore, these runs are useful to examine which parameters, and
thus processes, play a dominant role in the calculation of the mass balance.
Clearly, the mass balance sensitivity of the model is our main concern. How-
ever, also the response of the snow properties (density, mass and depth) to
perturbations in the model parameters is investigated and considered in the
determination of the standard parameter set-up.

Table 4.1 shows the mean sensitivity of the modeled mass balance, snow
density and surface temperature to changes in several model parameters. Both
positive and negative perturbations to the standard parameter set-up are ap-
plied to test the linearity of the model response. It can be seen that the mass
balance is very sensitive to changes in parameters that determine the surface
albedo (αice, αfrsnow, t∗ and d∗). Additionally, the mass balance is strongly de-
pendent on the amount of snow accumulation, which is mainly affected by the
threshold temperature (Ts/r) and the precipitation gradient (γp). The mean
density of the snowpack is strongly influenced by variations in the gravitational
densification rate factor (β), the fresh snow density (ρfrsnow) and again the
albedo parameters (except αice). Finally, the surface temperature is also de-
pending on the albedo parameters (except αice) as well as on the background
turbulent exchange coefficient (Cb).

Clearly, the albedo parameters have a major impact on several variables in
the model output. Note that a small perturbation of αfrsnow has a remarkably
strong influence on the mass balance. This is due to the fact that the relative
amount of absorbed solar radiation is strongly dependent on the value of αfrsnow
in case of a recent snow fall event. E.g. if the surface albedo, right after snowfall
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Table 4.1: Mean mass balance sensitivity (∆MB), snow density sensitivity (∆ρ) and
surface temperature sensitivity (∆Tsurf ) to perturbations of the standard model parame-
ters. The main tuning parameters are colored red. A description of the model parameters
can be found in chapter 3. Note that ∆zice1 is the thickness of the uppermost ice layer.
The standard values represent the best estimates after comparing the model results to
observations.

Parameter Standard Perturbation ∆MB ∆ρ ∆Tsurf

value (m w.e. a−1) (kg m−3) (K)

Cb 0.0032 –0.0010 +0.072 –1.22 –0.273
+0.0010 –0.073 +1.14 +0.247

αice 0.32 –0.05 –0.101 +0.97 +0.009
+0.05 +0.100 –0.88 –0.009

γp (m km−1) 0.25 –0.1 –0.124 +0.68 +0.007
+0.1 +0.121 –0.54 +0.004

β 3.0 –1.0 +0.004 –15.87 –0.015
+1.0 +0.013 +11.78 +0.013

ρfrsnow (kg m−3) 230 –40 –0.006 –22.76 –0.025
+40 +0.002 +22.29 +0.025

Ts/r (K) 274.4 –0.5 –0.148 –0.39 +0.037
+0.5 +0.158 +1.61 –0.032

psea (hPa) 1020 –10 +0.004 –0.19 –0.009
+10 -0.004 +0.13 +0.010

Deff (m2 s−1) 1.1×10−4 –0.2×10−4 +0.002 +0.34 +0.001
+0.2×10−4 –0.003 –0.38 +0.001

ρice (kg m−3) 917 –20 –0.004 +2.32 –0.006
+20 +0.006 +2.02 +0.007

αfrsnow 0.90 –0.05 –0.209 +15.32 +0.427
+0.05 +0.169 –12.18 –0.426

αfirn 0.53 –0.05 –0.058 +3.01 +0.078
+0.05 +0.059 –2.71 –0.078

∆zice1 (m) 0.10 –0.05 –0.024 +1.62 –0.024
+0.05 +0.021 –0.55 +0.019

κ Eq. (3.31) ×2 +0.077 –2.98 +0.141
/2 –0.077 +3.38 –0.091

µ 10 ×5 –0.003 +0.63 0.000
/5 +0.023 –0.01 +0.009

θmi Eq. (3.33) ×2 +0.029 +1.27 +0.016
/2 –0.018 –0.99 –0.011

t∗ (days) 21.9 ×2 +0.197 –6.86 –0.258
/2 –0.434 +24.33 +0.543

d∗ (mm w.e.) 11 ×2 –0.201 +11.83 +0.212
/2 –0.058 +0.23 +0.119
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Table 4.2: Comparison of the modeled mass balance sensitivity to values found by Klok
and Oerlemans (2002) for the year 1999.

Parameter Perturbation ∆MB (m w.e. a−1)
This study Klok and Oerlemans (2002)

Cb +0.0005 –0.037 –0.04
Ts/r (K) –0.5 –0.148 –0.14
γp (m km−1) –0.05 –0.062 –0.07
αice –0.04 –0.081 –0.07

–0.08 –0.162 –0.15

occurred, is perturbed by 0.05 from 0.90 to 0.95, then the amount of absorbed
shortwave radiation will decrease by 50%, leading to a strong lowering of the
surface temperature, since other balancing energy fluxes are generally small in
wintertime. Perturbations of the firn albedo (0.53) and the ice albedo (0.32) will
result in smaller deviations of the surface temperature and thus the ice melt,
because the relative effect on the absorbed radiation is smaller and this effect
is more easily balanced by the other Tsurf -dependent energy fluxes, which are
generally large in summertime.

For tuning purposes, parameters are chosen, which mainly affect either the
mass balance or the mean snow density and snow depth. The mass balance is
therefore calibrated by adjusting Ts/r, Cb, αice and γp. On the other hand, the
snow density and depth are tuned with the parameters β and ρfrsnow.

Table 4.1 also shows that the modeled mass balance is not very strongly
reacting on perturbations of the subsurface parameters β, ρfrsnow, Deff , ρice,
κ, µ and θmi. For most of the sensitivity experiments, the model response
to perturbations is approximately linear. Exceptions are the clearly nonlinear
response of the model to variations of t∗ and d∗.

In table 4.2, simulated mass balance sensitivities over the period 1995-2000
are compared to values found by Klok and Oerlemans (2002) for the year 1999.
Generally, the sensitivities agree rather well, which is an indication that the
implementation of the snow model in this study has a small impact on the mass
balance sensitivity.

Figure 4.1 shows the sensitivity of the mass balance (a), mean snow density
(b) and surface temperature (c) as a function of height for the tuning param-
eters. The height dependence of the mass balance sensitivity is used to pick
parameters for the calibration of the relative surface height, which is measured
at five different altitudes.

The mass balance sensitivity of the parameter Ts/r (snow to rain transition)
has a pronounced peak around the equilibrium line altitude, which is caused by a
slight shift of the equilibrium line after a change in the snow accumulation. The
largest vertical gradients in the mass balance profile are found in this region as
a result of strongly varying albedo with height during the melting season. Thus,
an upward or downward shift of the mass balance profile has its largest impact
on the specific mass balance around the equilibrium line.

Vertical mass balance sensitivity profiles for the turbulent exchange coeffi-
cient (Cb) and the ice albedo (αice) show a steady decrease with height. The
parameter Cb depends on the temperature deficit at the surface, which is on
average largest in the lower regions, with high atmospheric temperatures and
surface temperatures limited at 0 ◦C. Note that a perturbation of Cb has a rel-

45



CHAPTER 4. RESULTS

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

2000

2500

3000

3500

4000 Cb -0.0010
Cb +0.0010
αice -0.05
αice +0.05
γp -0.10
γp +0.10
β -1.0
β +1.0
ρfrsnow -40
ρfrsnow +40
Ts/r -0.5
Ts/r +0.5

Mass balance sensitivity (m w.e. a-1)

Al
tit

ud
e 

(m
 a

.s.
l.)

a)

-40 -20 0 20 40

2000

2500

3000

3500

4000 Cb -0.0010
Cb +0.0010
αice -0.05
αice +0.05
γp -0.10
γp +0.10
β -1.0
β +1.0
ρfrsnow -40
ρfrsnow +40
Ts/r -0.5
Ts/r +0.5

Snow density sensitivity (kg m-3)

Al
tit

ud
e 

(m
 a

.s.
l.)

b)

-0.4 -0.2 0 0.2 0.4

2000

2500

3000

3500

4000

Cb -0.0010
Cb +0.0010
αice -0.05
αice +0.05
γp -0.10
γp +0.10
β -1.0
β +1.0
rhofs-40
rhofs+40
Ts/r -0.5
Ts/r +0.5

Surface temperature sensitivity (K)

Al
tit

ud
e 

(m
 a

.s.
l.)

c)

Fig. 4.1: Mass balance sensitivity (a), mean snow density sensitivity (b) and surface
temperature sensitivity (c) versus height for perturbations of the standard values of Cb,
αice, γp, β, ρfrsnow and Ts/r.
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atively large impact on the surface temperature (figure 4.1(c)), which indicates
that turbulent fluxes play a key role in the determination of this temperature,
as will be discussed later. The modeled mass balance sensitivity after a change
in the ice albedo is largest in regions where the ice surface is exposed initially,
resulting in a high sensitivity to perturbations of this parameter at the glacier
tongue.

The vertical precipitation gradient (γp) is the only tuning parameter showing
a mass balance sensitivity that is increasing with height even in the accumulation
zone. The peak around the equilibrium line can be explained following the same
reasoning as in the explanation of the peak after a perturbation of Ts/r. The
snow density and surface temperature sensitivities for changes in γp are small.
However, varying γp does have a considerable impact on the simulated snow
mass and thus on the snow depth.

Finally, the gravitational densification rate factor (β) and fresh snow den-
sity (ρfrsnow) have a negligible influence on the mass balance. However, these
parameters do have a significant impact on the mean snow density, and thus on
the snow depth, as shown in figure 4.1(b), and are therefore used for tuning of
the snow properties.

The sensitivity of the mass balance to fluctuations of climatic variables (air
temperature and precipitation) is discussed in section 4.5. In the next section,
the simulated components of the surface mass and energy balance are presented.

4.2 Components of the mass and energy balance

In this section, the modeled components of the mass and energy budget will be
presented. When available, a comparison with observations and other studies
is made. The section is divided into two parts discussing first the spatial and
then the temporal variations of these components.

4.2.1 Spatial variations

Mass balance

Figure 4.2(a) shows the height dependence of the mass balance and the different
mass fluxes that determine the mass balance (see equation (3.1)). The mass
balance is mainly controlled by the runoff term (R) in the ablation zone and
by the snow accumulation term (Psnow) in the accumulation zone. Runoff in
the ablation zone is determined by both surface runoff of melt and rain water
and runoff of slush water below the surface, while runoff in the accumulation
zone is fully determined by the runoff of slush water only. Note that rainwater
contributes to the mass balance in case of refreezing (see section 4.3). Both the
vapor exchange between the atmosphere and the surface (latent heat flux) and
the vapor transport through the surface (V ) do not have a major impact on
the mass balance. The mean altitude of the equilibrium line over the simulation
period (1983-2008) can be estimated from this graph (zero specific mass balance)
and is found at a height of approximately 3000 m a.s.l..

Figure 4.2(b) shows the spatial distribution of the specific mass balance.
Values of the annual mean mass balance range from -6.56 m w.e. a−1 at the
tongue to +1.38 m w.e. a−1 in the accumulation zone. Spatial variations in the
mass balance are mainly determined by geographical properties, like the altitude
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Fig. 4.2: Left (a): Yearly mean modeled mass balance (thick red line) and the com-
ponents that determine the mass balance (dashed lines) as a function of height for the
period 1983-2008. The mass balance profile is the sum of the dashed lines. [R=runoff,
P=precipitation, QLH/Ls=sublimation/riming, V=vapor transport through the surface].
Right (b): The spatial distribution of the mean annual mass balance over the period from
1983 to 2008. The equilibrium line is represented by the white line (zero mass balance).

and aspect of the grid cell, the amount of shading and the terrain view factor.
Small-scale variations in the surface properties, like the slope, sometimes result
in strong gradients in the mass balance pattern (note the similarities between
the mass balance in figure 4.2(b) and the slope in figure 2.5(b)). Refreezing of
melt water also has a significant impact on the mass balance, as will be shown
in section 4.3.

Surface energy balance

In figure 4.3, the spatial distribution of the different components that make up
the energy budget is given (see equation (3.2)). These patterns will be discussed
briefly here.

The net shortwave radiation (figure 4.3(a)) is on average the major source
of energy at the surface with values ranging from 15 to 73 W m−2. By virtue
of its linear dependence on the albedo, a large gradient in the net shortwave
radiation is found around the mean equilibrium line altitude. Furthermore,
spatial variations in the geographical parameters, like the terrain view factors
and the amount of shading, result in small-scale gradients in the net shortwave
budget. The spatial patterns of the mass balance (figure 4.2(b)) and albedo,
shown in figure 4.4, look very similar, which is an indication of the mass balance
being strongly dependent on the formulation of the albedo, as is already shown
in the previous section. Values of the annual mean albedo vary from 0.58 at the
tongue to 0.85 in the accumulation zone (figure 4.4). A clear gradient in the
mean albedo can be found around the equilibrium line, which marks the extent
of the ablation zone during the year. It should be stressed that the altitude
of the equilibrium line is not necessarily located at the lower margin of the
snow pack at the end of the ablation season. Superimposed ice may reach the
surface in the area above the equilibrium line, resulting in a lower albedo, which
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Fig. 4.3: Spatial distribution of the modeled net shortwave radiation (a), net longwave
radiation (b), the sensible heat flux (c), the latent heat flux (d), the heat supplied by rain
(e) and the subsurface heat flux (f) averaged over the period from 1983 to 2008.
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Fig. 4.4: The spatial distribution of the mean albedo over the period from 1983 to 2008.

could make it more difficult to estimate the altitude of the equilibrium line by
eye. However, for the Morteratsch glacier, the superimposed ice layer on top of
the impermeable ice can be distinguished rather easily from the bare ice in the
ablation zone (personal communication, Reijmer, 2009).

The major (and only) sink of energy is the net longwave radiation (figure
4.3(b)). At higher altitudes, where air temperatures are usually lower (LWin

smaller), most negative values of the net longwave radiation are found, despite
the lower mean surface temperatures (LWout smaller). Recall that the cloud
cover is spatially invariant over the entire glacier, but it does have a large impact
on the amount of incoming longwave radiation.

The turbulent fluxes are on average adding energy to the surface. Both the
sensible heat flux (figure 4.3(c)) and the latent heat flux (figure 4.3(d)) are a
function of the temperature gradient between the atmosphere and the surface.
Consequently, largest values of the turbulent fluxes are found at the glacier
tongue where the air temperature can become much larger than the surface
temperature, which cannot be raised above 0 ◦C. The sensible heat flux is on
average about eight times larger than the latent heat flux.

The mean contribution of the heat supplied by rain (figure 4.3(e)) to the
annual energy budget is small. Values range from ∼0.3 to ∼0.7 W m−2, mainly
depending on the amount of rainfall. As mentioned before, peak values of the
heat supplied by rain of up to 150 W m−2 are obtained during heavy rainfall
events in summer.

The spatial pattern of the subsurface heat flux (figure 4.3(f)) is quite strongly
influenced by refreezing of meltwater. The corresponding heat release increases
subsurface temperatures, resulting in a more positive subglacial heat flux to-
wards the surface. Therefore, largest values of the glacier heat flux are found
in regions where refreezing is prominent, which is in the area around the equi-
librium line (see also section 4.3). Above this region, surface temperatures are
generally lower and melting occurs less frequently, resulting in less refreezing.
Below this region, refreezing is limited by the absence of a snow pack during
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Fig. 4.5: Left (a): Mean modeled energy involved in melting (thick red line) and the
components that determine the energy budget (dashed lines) as a function of height for
1983-2008. The melt energy profile is the sum of the dashed lines. Right (b): Spatial
distribution of the mean energy involved in melting over the period from 1983 to 2008.

part of the melting season. In absence of snow, melt water will runoff immedi-
ately. The sum of the fluxes in figure 4.3 (a) to (f) is equal to the amount of
energy involved in melting (’melt energy’) and is shown in figure 4.5(b).

Figure 4.5(a) shows the height dependence of the melt energy, together with
the different components of the energy budget. The melt energy is greatest
at the snout of the glacier and decreases gradually with height towards the
equilibrium line, above which the melt energy keeps decreasing at a lower rate
towards 0 W m−2. In the ablation zone, the energy involved in melting is
strongly influenced by the large contribution of the net shortwave budget. In
the accumulation zone, the sensible heat flux and the net shortwave radiation are
almost of similar magnitude. Thus, the relative influence of the sensible heat flux
on the surface energy budget is very large in the accumulation zone and accurate
estimates of the sensible heat flux are therefore of great importance to accurately
estimate the surface temperature and specific mass balance, especially at higher
altitudes. Note that near the glacier terminus, the sum of the turbulent fluxes
(QSH and QLH) is on average larger than the magnitude of the net longwave
radiation, resulting in a melt energy, which is greater than the net shortwave
radiation.

4.2.2 Temporal variations

Net mass balance

Figure 4.6 shows the net mean mass balance over the period 1983-2007. In
figure 4.6(a), a comparison to net mass balance observations at six glaciers in
the vicinity of the Morteratsch glacier is made. Mass balance data of these
six glaciers are provided by National Snow and Ice Data Center (NSIDC). In
figure 4.6(b), the net mass balance is shown, together with the summer and
winter balance. Until the year 2000, the net mass balance appears to be ap-
proximately constant (∼–0.60 m w.e. a−1). Thereafter, the year 2001 is the only
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Fig. 4.6: Left (a): Simulated net mean mass balance (m w.e. a−1) for the Morteratsch
glacier compared to the measured net mass balance of six other glaciers in the Alps. Right
(b): The net mass balance (black), winter balance (blue) and summer balance (red) of
the Morteratsch glacier.

year during the simulation with a positive net mass balance, mainly caused by
extensive snow fall. Since 2001, the net mass balance rate becomes increasingly
negative with values up to almost –2 m w.e. a−1 for the years 2006 and 2007.
The decreasing net mass balance over the last few years is mainly the effect of
higher melt rates during the summer, resulting in a more negative summer mass
balance, as can be seen in figure 4.6(b). The mean mass balance rate over the
entire simulation period is equal to –0.78 m w.e. a−1. For comparison, Klok
and Oerlemans (2004) computed a net mean mass balance of –0.76 m w.e. a−1

for the years 1982-2002, using a similar parameterization of the albedo. The
modeled net mass balance seems to match rather well with observations of the
net mass balance of the six other glaciers when comparing the modeled and
measured variability and peak periods (figure 4.6(a)). The relatively negative
mass balance values for the years 2005-2007 might well be a consequence of the
rather crude assumption that the ice albedo measured at M1 is representative
for the ice albedo of the entire ablation zone. A less dramatic decrease of the
ice albedo in the higher ablation areas seems more realistic, however, albedo
observations at multiple locations on the glacier are required to verify this.

The altitudinal mass balance gradient in the ablation zone is 0.006 m w.e. a−1

m−1, which is a typical value for glaciers in not too dry conditions. The mass
balance gradient is mainly the result of the atmospheric temperature lapse rate
and the mean albedo gradient with height.

Components of the surface energy budget

Figure 4.7 displays the shortwave fluxes (a), longwave fluxes (b), turbulent fluxes
(c) and the subsurface heat flux (d) at M1 (figure 2.4) as a function of time for
the period from 1 January 1999 to 1 January 2007. The pronounced seasonality
in the incoming shortwave radiation is a direct result of variations of the daily
mean incidence angle during the year (figure 3.2(a)). The relative difference
between the incoming and reflected radiation is by definition fully determined
by the surface albedo. After the snow pack has disappeared, a sudden drop
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Fig. 4.7: Computed daily mean shortwave radiation (a), longwave radiation (b), turbu-
lent fluxes (c) and the glacier heat flux (d) at M1 (2110 m a.s.l.) for the period from 1
January 1999 to 1 January 2007.
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in the albedo is observed, since the albedo of bare ice is much lower than the
albedo of (old) snow. This results in a much lower reflected shortwave radiation
and thus the net shortwave radiation becomes strongly positive, thereby adding
a lot of energy to the surface energy budget.

Figure 4.8 shows the modeled and measured albedo at M1 as a function of
time. A clear drop in the observed albedo can be seen after 2001. This was the
main reason to adjust the parameter αice manually for the period from 2002 to
2008. Oerlemans et al. (2009) argued that this substantial darkening is caused
by accumulation of mineral and biogenic dust particles, which is coming from
exposed side moraines along the glacier. The height dependence of the debris
deposition is to a large extent unknown, which complicates accurate estimation
of the albedo of ice especially for the last few years. At M1, the modeled albedo
seems to match the measured albedo reasonably well, although in spring the
mean albedo is systematically overestimated. Other discrepancies occur when
simulated snow fall is under- or overestimated as compared to observations.
Summer snow fall events can have a significant temporary effect on the albedo
and thus on the ice melt and mass balance as described by Oerlemans and
Klok (2004). Furthermore, in winter the observed surface albedo sometimes
exceeds the maximum albedo in the model (0.90). The modeled mean albedo
is underestimated by 0.013, as is shown in table 4.3. We found a correlation
coefficient of 0.81 and a root mean square error (rms) of 0.20 for the years 1995-
2007. Oerlemans and Knap (1998) fitted the modeled albedo to a one-year data
set by optimizing the albedo parameters in order to minimize the rms, resulting
in an optimized rms difference of 0.067 and a correlation coefficient of 0.93.

The computed longwave fluxes in figure 4.7(b) also show a pronounced sea-
sonal cycle, which is directly related to the annual cycle in the atmospheric
temperature. During the accumulation season, surface temperatures and air
temperatures are generally low, resulting in low values of the outgoing and in-
coming longwave radiation, respectively. The incoming thermal radiation is
mostly smaller than the outgoing radiation, mainly due to a lower emissivity
of the sky as compared to the emissivity of the surface, which is assumed to
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Table 4.3: Comparison of mean model results to observations at M1 for the entire
period of observations. Absolute differences and correlations are given. The correlations
between modeled and measured radiative budgets (SWnet, LWnet) and input variables
(Tatm, pair, RH and n) are based on daily mean values.

Variable Mean Mean Difference Correlation
modeled measured

SWnet (W m−2) 67.2 69.6 –2.4 0.91
LWnet (W m−2) –35.4 –41.6 +6.2 0.79

α 0.583 0.596 –0.013 0.81
Tatm (◦C) 0.30 1.44 –1.14 0.97
pair (hPa) 787.6 788.1 –0.5 0.99
RH (%) 74.3 62.5 11.8 0.76

n 0.52 0.49 +0.03 0.79
Snow depth (m) 0.569 0.586 –0.017 0.89

Snow density (kg m−3) 287 317 –30 0.66
Snow mass (m w.e.) 0.23 0.26 –0.03 0.91

Snow temperature (◦C) –7.5 –3.8 –3.7 0.88

emit as a blackbody. However, on warm summer days, the air temperature is
high (LWin large) and the surface temperature is limited at 0 ◦C (LWout small),
which may lead to a positive net longwave radiation. Therefore, a seasonal cycle
is found in the net longwave budget with on average less negative values during
the melting season.

The modeled time-series of the sensible heat flux and the latent heat flux
(figure 4.7(c)) shows a somewhat similar pattern, with highest values during
the ablation season as a consequence of large temperature gradients between
the surface and the atmosphere. Fluctuations in the sensible heat flux tend to
be larger than variations in the latent heat flux. The sensible heat flux (equation
(3.26)) is mainly a function of the temperature deficit (quadratic relation), while
the latent heat flux (equation (3.27)) is mainly determined by both the tem-
perature deficit at the surface (linear relation) and the vapor pressure gradient.
During the accumulation season, the latent heat flux is generally very small, due
to small gradients in the vapor pressure. The sensible heat flux can still become
quite substantial in the winter season through its stronger dependence on the
temperature deficit. Recall that the vapor pressure itself is strongly dependent
on the air temperature, as described by equation (2.3).

The subsurface heat flux (figure 4.7(d)) is mainly positive during the accumu-
lation season and negative during the ablation season, resulting in cooling and
warming of the snow pack, respectively. In wintertime, subsurface temperatures
are on average higher than the surface temperature, which reacts more directly
to changes in the air temperature, as will be shown in section 4.3. Moreover,
negative subsurface heat fluxes during the ablation season are a consequence of
the fact that the subsurface temperatures react more slowly to increasing air
temperatures than the surface temperature. It can be seen that the glacier heat
flux is gradually becoming less negative during the ablation season, as a result
of this lagging response of the subsurface temperatures. Note that the temper-
ature at a depth of ten meters below the snow/ice interface is fixed at 0 ◦C,
which implies that no downward directed heat transport will occur through the
interface at this depth, which is a reasonable assumption for temperate glaciers
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Fig. 4.9: Modeled fluxes (a), surface temperature and mass balance rate (b) during the
day at M1 (2110 m a.s.l.) averaged over the period from 1983 to 2008.

such as the Morteratsch glacier. This will result in a glacier heat flux that will
be positive on average, since the snow and surface temperature is always equal
or lower than the temperature at ten meters below snow/ice interface. The most
pronounced peaks in the glacier heat flux are found at the beginning and end
of the accumulation season. These mainly positive peaks are most likely caused
by refreezing, which can produce strong temperature gradients near the surface.

Figure 4.9 shows the mean daily variations in the surface energy fluxes (a),
the surface temperature and the mass balance rate (b). It can be seen that all
the energy fluxes, except the net shortwave radiation, have a minimum during
the day, while during the night they are approximately constant. The minima
during daytime are a result of rising surface temperatures, caused by the positive
shortwave budget. Higher surface temperatures will result in a large outgoing
longwave flux, a stronger downward directed subsurface heat flux and on average
a smaller temperature deficit between the atmosphere and the surface, resulting
in weaker turbulent fluxes. The timing of the minimum in the glacier heat flux
is determined by the rate of increase of the surface temperature by solar heating
and the conductivity of the medium, which affects the response time of the sub-
surface temperatures to surface temperature variations. If surface temperatures
increase more rapidly than subsurface temperatures, then the subsurface heat
flux will become more negative. On the other hand, if surface temperatures
increase less rapidly than subsurface temperatures, then the glacier heat flux
will become less negative.

The surface temperature and mass balance rate in figure 4.9(b) both show a
pronounced peak around noon. They are strongly anti-correlated, since the mass
balance rate is mainly determined by the amount of melting which requires the
surface temperature to be at melting point. It is remarkable to see that the mass
balance rate in the evening is significantly larger than the mass balance rate in
the early morning, which is mainly a consequence of more frequent snow fall
during the evening, as shown in figure 4.10 for station M1. Note that especially
the rainfall curve shows a pronounced peak around midnight, which is most
likely a consequence of more frequent convective rainfall in summer during the
evening.

Figure 4.11 shows scatterplots of the (daily mean) modeled versus the mea-
sured shortwave and longwave fluxes. The computed incoming shortwave ra-
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total accumulation (blue) at M1 (2110 m a.s.l.) over the period from 1983 to 2008.

diation agrees rather well with the observations. However, for large fluxes the
model tends to slightly overestimate the incoming shortwave radiation. For
the outgoing shortwave radiation, the overestimation of the computed values is
somewhat more pronounced. The fact that the shortwave fluxes are depending
on several factors, makes it difficult to explain discrepancies between the cal-
culated and observed solar radiation. Nevertheless, the overestimation of the
reflected shortwave radiation, especially for larger values, is most likely related
to an overestimation of the albedo of melting snow in the model. Furthermore,
uncertainties related to the cloud cover, orientation of the grid cell, tilt of the
mast, albedo of the grid cell, albedo of the surrounding terrain, the atmospheric
transmissivity and accuracy of the measurement devices can all have a signifi-
cant impact on the computed and measured shortwave fluxes. On average, the
net shortwave radiation is underestimated by 2.4 W m−2 (table 4.3).

The scatterplot of the incoming longwave radiation shows that, despite the
large spread due to uncertainties in the cloud cover, the mean measured and
modeled values agree reasonably well, which is not very surprising, since the
parameters εcl and b in equation (3.21) have been calibrated with observations
done on the glacier in 1999 by Klok and Oerlemans (2002). On the other hand,
the computed outgoing longwave fluxes are significantly lower than measured
values. The net longwave radiation is therefore overestimated by 6.2 W m−2

(table 4.3), mainly as a result of the underestimation of the outgoing longwave
fluxes. The outgoing longwave radiation is underestimated by 7.2 W m−2,
which corresponds to a mean underestimation of the surface temperature of 1.7
◦C. For comparison, Klok and Oerlemans (2002) underestimated the surface
temperature by 1.8 ◦C.

In the model, the outgoing longwave radiation is formulated as a function of
the surface temperature, which is determined internally by solving the energy
balance equation (equation (3.2)). This implies that the underestimation of the
surface temperature is the result of uncertainties in the full set of formulations
that determine the energy budget. In section 4.1, it was shown that the surface
temperature is strongly affected by the amplitude of the turbulent fluxes. It
is therefore very well possible that the calculated turbulent fluxes are currently
underestimated. A comparison of the computed turbulent fluxes to observations
would provide more information on this issue. The glacier heat flux is most
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Fig. 4.11: Scatterplots of modeled versus measured daily mean incoming shortwave radi-
ation (a), outgoing shortwave radiation (b), incoming longwave radiation (c) and outgoing
longwave radiation (d) for the period from 8 July 1998 to 15 May 2007.

likely not responsible for the underestimation of the surface temperature, since
the sensitivity of the surface temperature to perturbations of the subsurface
parameters is found to be small (section 4.1).

Relative surface height

Figure 4.12 shows the relative surface height as a function of time for the five
stake measurement sites (M1-M5). At station M1 (figure 4.12(a)), observations
and modeled values agree very well. This is partly due to the availability of
data of multiple variables at M1, which enables more extensive tuning with the
model parameters. Over the last few years (2005 to 2008) the model tends to
slightly overestimate the amount of melting. Note that the albedo of ice in
the model is based on measurements of the shortwave fluxes at M1. Therefore,
deviations between the modeled and measured amount of ice melt are most
likely a consequence of inaccurate simulation of specific events (precipitation)
or the length of the ablation season. Taking an ice albedo which is constant in
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Fig. 4.12: Modeled and measured relative surface height at M1 (2110 m a.s.l.) (a),
M2 (2270 m a.s.l.) (b), M3 (2500 m a.s.l.) (c), M4 (2700 m a.s.l.) (d) and M5 (2910 m
a.s.l.) (e).
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sonic ranger at M1 (2110 m a.s.l.).

time would lead to a large underestimation of the relative surface height, as will
be discussed in section 4.4.

At station M2 (figure 4.12(b)), the relative surface height is only measured
since 2005. Thereafter, the simulated relative surface height is in good accor-
dance with observations. At M3 (figure 4.12(c)), the pattern of the relative
surface height agrees rather well with the observations. However, during cer-
tain years (2001 and 2006) the amount of melting is underestimated by the
model, leading to a maximum deviation in the relative surface height of 3.7 m
at the end of the year 2006. At M4 (figure 4.12(d)), the model also predicts
more melt than is observed (note the difference in axis scaling between the fig-
ures). Simulated relative surface heights at M5 (figure 4.12(e)) are in rather
good agreement with measurements.

In figure 4.13, the modeled relative surface height is compared to the ob-
served surface height, measured with a sonic ranger at M1. Generally, the
time-series agree very well, since the major observed accumulation and melting
events are also represented in the model results. The striking resemblance be-
tween the two curves clearly demonstrates the ability of the model to simulate
mass balance variations on very short time-scales.

From the parameter sensitivity experiments (section 4.1), it can be concluded
that the height dependence of the mass balance (and thus the relative surface
height) can to a certain extent be calibrated with the tuning parameters (Cb,
αice, γp and Ts/r). This resulted in a relatively good agreement of the evolution
of the relative surface height at the lowest (M1) and highest (M5) measurement
sites. However, at other stations (M3 and M4), the observed relative surface
height is not always very well reproduced.

These local deviations of the relative surface height are mainly caused by
uncertainties in the computed net shortwave radiation, e.g. by wrongly estimat-
ing the surface albedo or surface orientation. Station M4 is known to be located
rather close to a side moraine, which could lead to more significant darkening
of the ice during the ablation season (Oerlemans et al., 2009). Other processes
that could have affected the relative surface height are snow drift by wind or
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Fig. 4.14: Modeled and measured snow depth at M1 (2110 m a.s.l.) and M4 (2700 m
a.s.l.). Measurements were done with stakes (M1 & M4) and a sonic ranger (M1).

avalanches, which may transport significant amounts of mass. More detailed
information on the wind pattern on the glacier and the grain size of the snow
could provide more insight in the significance of wind-driven snow drift on the
mass balance. Also keep in mind that the measurement sites are allowed to move
freely with the glacier before being displaced to their initial position. The mean
velocity of the ice flow at the surface is about 10 to 20 meters per year. This
will result in variations in the location of the stakes, which are not considered
in the model. GPS data at the measurement sites in order to track the location
of the stations can be used to allow for dynamic positioning of the stations in
the model.

Snow accumulation

The evolution of the modeled and measured snow depth at stations M1 and
M4 is depicted in figure 4.14. Measurements at M1 (sonic ranger and stakes)
started in 1995 and the modeled snow depth seems to agree rather well with
these observations. Note that the differences between the stake readings and
the surface height measurements by the sonic ranger are generally small, but
they can be quite significant for some of the data points. The computed snow
depth is tuned with the parameters β (gravitational densification rate factor)
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and ρfrsnow (fresh snow density) in order to minimize deviations in the snow
properties between the results and observations at M1. With the standard
model set-up, the snow depth is underestimated by 1.7 cm on average when
computed values are compared to stake measurements (table 4.3).

The majority of the large snow fall events is reasonably well reproduced by
the model, as can be seen by comparing the modeled snow depth with observa-
tions by the sonic ranger (figure 4.14(a)). The largest differences are found in
the amplitude of the small peaks (during the year), which is related to errors
in the calculation of the amount of snow accumulation during a single snow fall
event.

The modeled start of the accumulation season (first snow fall) coincides in
most cases rather well with the observed start. However, the model tends to
slightly overestimate the length of the period with a snow cover, which is prob-
ably caused by an underestimation of the albedo of melting snow (figure 4.8).
Expressing the albedo as a function of accumulated maximum temperatures
since the last snow fall event will most likely result in a better estimate of the
albedo of melting snow (Brock et al., 2000; Winther, 1993). Furthermore, in-
cluding the effect of melt water accumulation in the albedo formulation, would
also lead to a better estimate of the albedo of melting snow (Greuell, 2000).

At M4 (figure 4.14(b)), stake measurements are rather scarce. The measured
values are on average somewhat larger than the simulated snow depths. Many
processes, like wind-driven snow drift, avalanches and the height dependence of
the precipitation, can have a large impact on the snow depth. In the model, the
amount of precipitation increases linearly with height (250 mm per km). One
might suggest to increase this gradient (γp) in order to achieve a thicker snow
pack at M4. This would indeed lead to a better agreement between measured
and modeled snow depth at M4. However, increasing γp will also result in a more
positive mass balance with height, which is not in accordance with observations.
Therefore, the precipitation gradient has not been used to tune the snow depth,
since calibrating the mass balance is our main priority.

Figure 4.15 shows the observed and calculated snow density (a) and snow
mass (b) at M1. On average the snow density is underestimated by 30 kg m−3

and the snow mass is underestimated by 0.03 m w.e. (table 4.3). The fresh snow
density and the densification rate are the factors that control the evolution of the
snow density. The densification rate can to a certain extent be controlled with
the parameter β, while the fresh snow density (ρfrsnow) is a model parameter
itself. ρfrsnow is set at 230 kg m−3, which is very likely an overestimation of
the real fresh snow density, as explained in section 3.2.3. The scarceness of the
density measurements creates difficulties in assessing the quality of the modeled
densification rate. Snow density measurements with a higher time resolution
might avoid this problem. Recall that the influence of ρfrsnow and β on the
mass balance is very small (table 4.1). The snow mass (figure 4.15(b)) is not
affected by the densification of the snow pack, and is therefore fully determined
by the amount of precipitation, melting and refreezing.

Model input

As a quality check of the estimated input variables on the grid, model input is
compared to observed weather conditions on the glacier with the mast. In the
model, all the input variables are derived from measurements at the surrounding
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Fig. 4.15: Modeled and measured mean snow density (a) and snow mass (b) at M1
(2110 m a.s.l.).

stations and are used to force the model, as described in section 2.3.3. Figure
4.16 shows scatterplots of the daily mean modeled and measured air pressure
(a), relative humidity (b), cloud fraction (c) and atmospheric temperature (d)
at M1.

The air pressure estimates agree very well with the measured values on the
glacier at M1. The average deviation of the daily mean values is only 0.5 hPa
(table 4.3). The input values for the relative humidity are overestimated by on
average 11.8%. The large discrepancy between the measured and modeled val-
ues is a result of uncertainties associated with the conversion of measured values
at Corvatsch and Samedan to values on the glacier grid. The calculated cloud
fraction agrees on average rather well with the values derived from observations
at M1 (section 2.3.3). However, as can be seen in figure 4.16(c), the spread in
the scatterplot of the daily mean cloud fraction is very large. Cloud cover esti-
mates are smoothed by applying a 24-hour running mean to the original cloud
cover estimates. Without this averaging, the spread in the scatterplot would
be significantly larger. Note that the averaging procedure leads to input values
that are on average closer to the mean modeled cloud fraction of 52%. Modeled
atmospheric temperatures agree reasonably well with observed values, although
low temperatures are slightly underestimated by the model. The deviation of
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Fig. 4.16: Modeled versus measured daily mean air pressure (a), relative humidity (b),
cloud fraction (c) and atmospheric temperature (d) at M1 (2110 m a.s.l.) from 8 July
1998 to 15 May 2007

the mean values is 1.14 ◦, associated with a mean underestimation of modeled
atmospheric temperature estimates at M1. Recall that the magnitude of the
incoming longwave radiation, which is depending on the atmospheric temper-
ature, is tuned to observations at M1 by Klok and Oerlemans (2002) in order
to determine values for the parameters εcl and b (equations (3.20)-(3.22)). It is
very well possible that the calibrated values of εcl and b compensate for the un-
derestimation of the atmospheric temperature. Therefore, the low atmospheric
temperatures are most likely not responsible for the previously mentioned un-
derestimated surface temperatures.

4.3 Subsurface variables

In this section the impact of processes acting below the surface on the mass
balance is investigated. Our main interest is to assess the effect of refreezing
on the subsurface temperatures and densities and to examine its influence on
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Fig. 4.17: Height profile of the mass balance rate (m w.e. a−1) for a run with refreezing
included (red) and a run without refreezing (black), calculated over the period from 1
October 1995 to 30 September 2000. The difference between the two runs (refreezing –
no refreezing) is described by the dashed blue line.

the mass balance. In previous studies on the mass balance of the Morteratsch
glacier, simplified subsurface models were used to determine the glacier heat
flux on a two-dimensional grid (Klok and Oerlemans, 2002). The coupling of a
two-dimensional energy balance model to a multi-layer snow model in order to
asses the impact of temperature and density variations below the surface on the
mass balance is new for this glacier.

Figure 4.17 presents the mean yearly mass balance for a run with refreezing
of melt and rain water included and for a run with refreezing set to zero. Over
the entire glacier, refreezing will add mass to the surface mass balance. Clearly,
the effect of mass addition by refreezing is more important than the increased
melting by a more positive glacier heat flux due to increased subsurface tem-
peratures. The contribution of refreezing to the mass balance is on one hand
determined by the availability of melt water, which decreases with altitude. On
the other hand, refreezing can only occur if snow is present, which is more likely
at greater altitudes. From figure 4.17, it can be seen that the largest contri-
bution to the mass balance by refreezing is found at an altitude of about 3000
m a.s.l.. Ignoring the process of melt water (and rain water) refreezing would
lead to an increase of the equilibrium line of about 50 m. Furthermore, the net
mass balance would decrease by 0.41 m w.e. a−1 if refreezing of water below
the surface is not taken into account. Hence, the contribution of refreezing to
the mass balance corresponds to 48% of the mean snow accumulation of 0.85 m
w.e. a−1.

Figure 4.18 shows the impact of refreezing (a) and internal accumulation
(b) on the spatial pattern of the mass balance. It can be seen that refreezing
is mainly affecting the mass balance around the equilibrium line in the eastern
part of the glacier. Refreezing is largest in relatively flat regions around the
equilibrium line, since these areas receive more solar radiation. Recall that in-
ternal accumulation is a term used to describe the amount of percolating water
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Fig. 4.18: Spatial distribution of the impact of refreezing (a) and internal accumulation
(b) on the mass balance averaged over a 5-year period (1995-2000).

and irreducible water that refreezes below the summer surface of the previous
year. It is interesting to assess the importance of this term, since traditional
mass balance measurements do not account for this mass contribution in the
accumulation zone (Schneider and Jansson, 2004). The area-averaged simulated
internal accumulation is 0.04 m w.e. a−1, which corresponds to about 3.5% of
the sum of the mean accumulation by snow and refreezing. For comparison,
Schneider and Jansson (2004) estimated an annual contribution 0.04 to 0.06 m
w.e., corresponding to 3 to 5% of the annual accumulation for Storglaciären,
Sweden. Furthermore, Reijmer and Hock (2008) found a contribution of inter-
nal accumulation of 0.25 m w.e., which amounted to about 20% of the winter
balance. Note that internal accumulation can only occur in the accumulation
zone, since the previous year’s summer surface in the ablation zone is an imper-
meable ice layer, which disables vertical transport and refreezing of melt/rain
water. Internal accumulation is largest in regions just above the equilibrium
line, since surface melting is more significant in this region than at higher alti-
tudes. Furthermore, snow accumulation decreases with altitude, which causes
the summer surface of the previous year to be closer to the glacier surface and
therefore favors the penetration of percolating water through the previous year’s
summer surface.

The mean subsurface temperatures and densities at certain depths are given
as a function of altitude in figure 4.19. Lowest mean subglacial temperatures
are found at the surface, which is typical for a temperate glacier. Close to the
surface, the temperature of the medium is affected by the atmospheric tem-
perature by means of the subsurface heat flux. Figure 4.19(a) also shows that
subsurface temperatures decrease with altitude, which is a consequence of the
negative mean atmospheric temperature gradient with altitude. Note that a re-
markable bump in the subsurface temperature is found at a depth of 2 m below
the surface in the accumulation zone. Refreezing of melt- and rain water is an
important source of energy, even at 2 m below the surface in the accumulation
zone. However, in the ablation zone, ice is usually found at a depth of 2 m be-
low the surface, which disables the possibility of refreezing. Without refreezing
in the model, all the temperature profiles would show a gradual decrease with
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Fig. 4.19: Height profile of mean subsurface temperatures (a) and densities (b) at
certain depths below the surface averaged over the 25-year period (1983-2008).

altitude.
The subsurface density profile at different depths (figure 4.19(b)) also shows

a decrease with altitude. A notable drop in the density profiles is found around
3000 m a.s.l.. Above this altitude snow is present throughout the year, while
below this height, the snow pack vanishes during the ablation season. At a depth
of 2 m below the surface, the density is approximately equal to the density of ice,
since a snow thickness larger than 2 m is quite exceptional in the ablation zone.
The impact of refreezing on the density is less pronounced than the effect on the
subsurface temperatures. Gravitational densification becomes more significant
at higher temperatures (see figure 3.4) and is therefore more pronounced in the
lower regions. This gravitational packing is mainly responsible for the increase
of the density with depth, since older snow has had more time to settle.

The water content of the firn layer comprises slush water and irreducible
water. In figure 4.20, the water content at M1 is plotted as a function of
time for a 50-day period in the spring of 1999. Irreducible water is stored in
a layer if the available amount of water exceeds the amount of water which
can be refrozen. Recall that refreezing is limited by either the temperature of
the layer, the density of the layer or the availability of water, as described in
section 3.1.2. The irreducible water content of a layer can only decrease by
refreezing or densification of the layer. Refreezing of irreducible water mainly
occurs after surface cooling during the night, which explains the daily minima
in the pattern of the irreducible water content. Once all the subsurface layers
contain the maximum amount of irreducible water (equation 3.32), the melt
water will reach the impermeable ice and a slush layer is formed. Slush water
will leave the layer by (subsurface) runoff or refreezing, resulting in a drop of
the slush water content during the night. As the snow pack becomes thinner
and melt water keeps refreezing, the density of the firn layer may finally reach
the density of ice to form a superimposed ice layer. During the last 10 days in
figure 4.20 ice melt initiates and all the melt water runs off instantly.

Figure 4.21 displays the densification of the snow pack by the processes of
gravitational packing (a), refreezing of percolating water (b) and vapor transport
(c). Also the snow temperature is given since densification is strongly dependent
on this temperature. Conversely, the snow temperature itself is also strongly

67



CHAPTER 4. RESULTS

0

10

20

30

-10

-5

0

5

Apr/12 May/2 May/22

Irreducible water
Slush water

Runoff

W
at

er
 c

on
te

nt
 (

kg
)

Runoff (kg per half hour)

Date

Fig. 4.20: The total amount of irreducible water (red) and slush water (black) stored in
the snow pack during a 50-day period in 1999. The amount of runoff (kg per half hour)
is given in blue.

influenced by the densification rate in case of refreezing.
Figure 4.21(a) shows that the patterns of the gravitational densification and

the snow temperature are strongly correlated. Settling of the snow becomes
increasingly important for higher snow temperatures, which is illustrated by
the rapid increase of the densification after April 22, and by the pronounced
daily cycle in the densification with lowest rates during the nights. The grav-
itational packing rate of the snow also depends on the difference between the
snow density and the density of ice. As the density keeps increasing, this differ-
ence becomes smaller and consequently the gravitational densification rate will
decrease gradually, as can be seen clearly after April 24.

The densification by refreezing of melt and rain water is depicted in figure
4.21(b). The first three peaks in the densification rate are related to direct
refreezing of percolating melt water and are mainly responsible for the rapid
rise of the mean snow temperature to melting point. If a slush layer is present
(figure 4.20), refreezing of this slush water will occur (mainly) during the nights,
which explains the peaks at May 9-11. In absence of slush water, irreducible
water may refreeze. The peaks from May 4 to May 8 are most likely caused by
refreezing of this irreducible water.

Figure 4.21(c) displays the densification of the snowpack due to vapor trans-
port through the surface. Vapor transport will also take place between succesive
subsurface layers, however, these fluxes only transport mass from one layer to
another without changing the total mass of the snowpack. The vapor transport
at the interface between the bottom of the snowpack and the impermeable ice
is assumed to be zero. Therefore, densification by vapor fluxes can only occur
by means of mass exchange through the surface interface. The direction and
magnitude of the vapor fluxes is depending on the vertical temperature gradient
(equation (3.46)). The total densification of the snowpack is therefore depending
on the temperature difference between the surface and the first subsurface layer.
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Fig. 4.21: The gravitational densification (a), densification by refreezing (b) and the
densification by vapor transport through the surface (c) as a function of time for a 30-day
period in 1999 at station M1. The mean snow temperature for this period is given in red.

The densification by vapor transport is on average negative, since the surface
temperature is generally lower than the temperature of the first subsurface layer
(figure 4.19(a)). Figure 4.21(c) shows a pronounced daily pattern in the vapor
densification rate, with negative values during the night as a result of surface
cooling and positive peaks during the day after heating of the surface. The
response time of the vertical snow temperature profile to changes in the surface
energy budget increases rapidly with depth, resulting in a temperature gradient
between the surface and the first subsurface layer. Once the temperature of the
entire snow pack is raised to 0 ◦C, then the densification by vapor transport
cannot attain values greater than zero anymore, since the surface temperature
is always equal or smaller than the subsurface temperatures.

Recall that both refreezing and vapor fluxes contribute to the total mass
of the snowpack, while settling of the snow only affects the snow density and
snow depth. The mean impact of refreezing on the total densification is of
approximately similar magnitude as the impact of gravitational densification.
On the other hand, the effect of densification by vapor transport on the total
densification is about 20 times smaller.

The vertical profiles of the daily mean subsurface temperatures during a
one-year period are presented in figure 4.22. The chosen period from 1 October
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Fig. 4.22: Daily mean subsurface temperatures at certain depths as a function of time
for the period from 1 October 2000 to 30 September 2001. The snow / ice interface is
located at a depth of 0 m (dashed black line). The temperature profiles are given at 2100
m a.s.l., 2900 m a.s.l. and at 4050 m a.s.l..
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Fig. 4.23: Daily mean subsurface densities at certain depths as a function of time for
the period from 1 October 2000 to 30 September 2001. The snow / ice interface is located
at a depth of 0 m (dashed black line). The density profiles are given at 2100 m a.s.l., 2900
m a.s.l. and at 4050 m a.s.l..
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2000 to 30 September 2001 is characterized by an exceptionally large amount of
snow accumulation. This extensive snow fall resulted in a positive specific mass
balance at 2900 m a.s.l. and a maximum snow depth at the tongue of more than
2 m. As we have shown before, the year 2001 was the only mass balance year
since 1983 with a positive net mass balance.

At an altitude of 2100 m a.s.l. the grid cell is covered by snow from the
beginning of November until the end of June. During the winter months, surface
temperatures drop to very low values during cold periods. The response time of
the subsurface temperatures to these lower surface temperatures is depending
on the distance to the surface. At depths greater than 2 m below the surface,
subsurface temperatures respond very slowly (on the order of weeks or longer)
to surface temperature variations, and only a seasonal cycle is found in the
subsurface temperatures. Note that a melting and refreezing event occurred at
2100 m a.s.l. in January, which significantly increased subsurface temperatures
for a few weeks. At the end of April, the snow pack starts to melt and refreezing
adds mass and heat to the snow layers. By the end of June, the snow pack
has vanished and ice melt starts. Temperatures at and just below the surface
are on average lower than subsurface temperatures at greater depths leading
to a positive mean glacier heat flux. However, heating by refreezing and the
lagging response of the subsurface temperatures to surface heating may lead
to a temporary negative glacier heat flux. Recall that no heat is transported
downwards at a depth of 10 m below the snow/ice interface (temperature set at
0 ◦C, thereby disabling the possibility of a mean negative glacier heat flux.

At an altitude of 2900 m a.s.l., snow is present during the entire year, which
is unusual, since the equilibrium line is located at a height of about 3000 m a.s.l..
Subsurface temperatures are somewhat lower than at the glacier tongue. How-
ever, during the summer months, refreezing raises the temperature of the entire
snow pack to melting point. It takes until the beginning of September, before
all the water in the firn layer has been refrozen, and subsurface temperatures
can drop below melting point again.

Even at a height of 4050 m a.s.l., some melting occurs during the summer
months, heating the upper snow layers. The deeper layers are hardly affected
by surface temperature variations.

The subsurface density profiles in figure 4.23 are strongly related to the
subsurface temperatures in figure 4.22, since the gravitational densification rate
is mainly depending on the temperature of the layer. Gravitational packing
of the snow decreases the snow depth and is largest in layers with a higher
temperature. Snow fall events add mass with a low density to the surface and
therefore decrease the mean density of the snow pack. On the other hand,
refreezing adds mass to the interior of the snow pack and therefore increases the
mean snow density. Note that it takes much more time to raise the density by
refreezing to the density of ice than to raise the snow temperature to melting
point. At 4050 m a.s.l, densities are steadily increasing with depth. Large
vertical gradients in the snow density are found as a result of the limited amount
of snow layers in the model. A clear increase of the snow density with depth is
seen since older snow has had more time to settle. Furthermore, the increasing
temperatures with depth result in a higher densification rate of the deeper layers.
Despite the low air temperatures and the limited amount of melting at 4050 m
a.s.l., refreezing of melt water takes place up to several meters below the surface.
Note that the firn density at an altitude of 2900 m a.s.l. is raised to the density
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Fig. 4.24: Simulated (red) and measured (black) subsurface temperatures at M1 on 2
February 2001 (left) and 26 April 2001 (right).

of ice to form a super-imposed ice layer on top of the impermeable ice which is
exposed at the surface in August. In September fresh snow starts accumulating
on top of the super-imposed ice.

In figure 4.24, two subsurface temperature profiles are compared to observa-
tions at M1. At 2 February 2001 (left panel), the modeled snow depth is larger
than the measured thickness of the snowpack. The simulated shape of the tem-
perature profile seems to agree rather well with the shape of the observed profile.
However, if we compare measured and modeled temperatures at equal distances
to the surface, then the model strongly underestimates the snow temperatures.
The modeled snow temperature profile at 26 April 2001 (right panel) again un-
derestimates the subsurface temperatures significantly. The measured profile is
at melting point throughout the snow pack, while melt water refreezing in the
model was insufficient to heat the entire snow pack to 0 ◦C by that time, which
is the result of underestimated surface temperatures.

Modeled mean subsurface temperatures at M1 are on average 3.7 ◦C lower
than measured values. As mentioned before, the mean surface temperature is
underestimated by 1.7 ◦C. However, surface temperatures in summer are gener-
ally not much lower than observed values, since the snow pack is at melting point
most of the time. So the low mean surface temperature is mainly a consequence
of underestimated surface temperatures in the winter season. Furthermore, sub-
surface temperatures are all measured when a snow pack is still present. Most
likely, the discrepancies between the modeled and measured snow temperatures
can be fully ascribed to an underestimation of the surface temperature.

4.4 Additional simulations

We performed some additional runs in order to study the effect of a changing
ice albedo on the mass balance (section 4.4.1). Furthermore, the effect of incor-
porating a snow model has been investigated by applying the parameter set-up,
proposed by Klok and Oerlemans (2002), to our model (section 4.4.2).
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Fig. 4.25: Relative surface height at M1 for the period 2001 to 2008 for a run with a
constant ice albedo (red) and a run with a decreasing albedo of ice after 2001 (black),
based on measurements at M1.

4.4.1 Effect of a changing ice albedo

Debris deposition on the ice is known to have a major impact on the mass
budget. Figure 4.25 illustrates this effect by showing the computed relative
surface height at M1 for a simulation with a constant albedo and a run with
a decreasing albedo since 2002 (with values calibrated with observations). It
can be seen that at the start of 2008, the difference between the relative surface
heights is already 5.9 m. This effect is comparable to the impact of a 1.4 ◦C
temperature rise on the relative surface height. For comparison, Oerlemans
et al. (2009) concluded that a 1.7 ◦C temperature increase would have a similar
impact on the ablation as the decreasing ice albedo for the period 2003-2006.
Note that αice has a significant impact on the summer mass balance, while the
winter balance is hardly affected. Increased debris concentrations can rightfully
explain the decrease of the measured albedo of ice since 2002 (Oerlemans et al.,
2009). However, further research is needed to study the spatial distribution of
the debris concentrations in more detail. Current albedo parameterizations do
not account for these variations in the debris deposition.

4.4.2 Effect of incorporating the snow model

We conclude this section by comparing the mass balance profile of two different
runs: one with the standard parameter set-up of the model, and another one
with the set-up proposed by Klok and Oerlemans (2002). The height profiles of
the mass balance for these two runs and the mutual differences are presented in
figure 4.26. Klok and Oerlemans (2002) calibrated certain parameters to match
observations. However, they did not tune the mass balance itself, which was
the main goal of the calibration procedure in this study. Klok and Oerlemans
(2002) overestimated the mass balance with their model by 5 to 8% for the
stations M1, M3 and M4. The differences in the parameter set-up adopted
by Klok and Oerlemans (2002) and the set-up used in this study are given in

74



4.4. ADDITIONAL SIMULATIONS

-6 -5 -4 -3 -2 -1 0 1 2

2000

2500

3000

3500

4000

Data 3

I: Klok and Oerlemans (2002)
II: Present study
Δ = I - II

Mean mass balance (m w.e. a-1) 

Al
tit

ud
e 

(m
 a

.s
.l.

)

I

II

Δ

Fig. 4.26: The mean mass balance (m w.e. a−1) over the period 1995-2000 for a
run with the standard parameter settings of the model (blue) and a run with our model
applying the parameter set-up used by Klok and Oerlemans (2002).

table 4.4. Note that certain processes which are contained in this model are not
included in the model used by Klok and Oerlemans (2002). These processes, like
refreezing, have a significant influence on the mass balance as shown in section
4.3. From figure 4.26, it is clear that the parameter set-up proposed by Klok and
Oerlemans (2002) leads to a more positive mass balance with our model than
with the standard set-up used in this study. Especially around the equilibrium
line altitude, the difference is significantly large, which is mainly caused by the
sensitivity of the mass balance to perturbations of γp and Ts/r (figure 4.1(a)).
At lower altitudes, the effect on the mass balance of the differences in the values
for Cb and αice seem to oppose each other, while the differences in γp and
Ts/r do not have a major impact on the mass balance in this area. In the
accumulation zone, the mutual difference in the mass balance can be to a large
extent explained by the variations in the precipitation gradient γp. Running
the model with the set-up proposed by Klok and Oerlemans (2002) leads to
a significant overestimation of the mass balance. Note that a value for γp of
400 mm km−1 may lead to a better estimate of the snow depth at M4 (figure
4.14(b)). However, this adjustment of γp will deteriorate the modeled profile of
the mass balance as compared to measured values and is therefore not applied.
The incorporation of the snow model is the main difference between our model

Table 4.4: Comparison of the model set-up used by Klok and Oerlemans (2002) and
the set-up used in this study.

Variable This study Klok and Oerlemans (2002)

αice 0.32 0.34
Cb 0.0032 0.0037

γp (m km−1) 0.250 0.400
Ts/r (K) 274.4 274.5
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Table 4.5: Mean mass balance sensitivity with respect to changes in air temperature
(Tatm) and precipitation (P ) over the period from 1 October 1995 to 30 September 2000.
Klok and Oerlemans (2002) determined the mass balance sensitivity for the year 1999.

Perturbation ∆MB (m w.e. a−1) Klok and Oerlemans (2002)

Tatm + 2 ◦C –1.41
Tatm + 1 ◦C –0.68 –0.70
Tatm – 1 ◦C +0.58 +0.65
Tatm – 2 ◦C +1.00
P + 20 % +0.29
P + 10 % +0.15 +0.17
P – 10 % –0.16 –0.16
P – 20 % –0.32

and the model used by Klok and Oerlemans (2002). It is not surprising that the
set-up proposed by Klok and Oerlemans (2002) applied to our model leads to
results that agree less well with observations, since Klok and Oerlemans (2002)
tuned their model parameters while neglecting the effects of subsurface processes
on the mass balance.

4.5 Climate sensitivity

Climate sensitivity experiments play a crucial role in the interpretation of the
vulnerability of glaciers to variations in climate variables. The sensitivity of
the mass balance to climatic changes is investigated by perturbing the input
values of the air temperature and precipitation. The mass balance is a good
indicator of climate change, since it responds directly to fluctuations in the mass
and energy fluxes at the surface. On the other hand, the glacier responds to
changes in the mass balance by adjusting its length as described by the linear
response equation (Oerlemans, 2001). Length adjustments are not considered
in this study, since the glacier geometry is kept fixed in the model.

The climate sensitivity of the mass balance is given in table 4.5 together
with the values found by Klok and Oerlemans (2002). The mass balance is
more sensitive to a positive temperature change than to a negative temperature
change, which indicates that the mass balance response is nonlinear. The sen-
sitivities found for the Morteratsch glacier by Klok and Oerlemans (2002) are
quite similar to the values found in this study. The largest difference is found
in the sensitivity after a negative temperature perturbation. Note that the re-
sults by Klok and Oerlemans (2002) are based on a 1-year simulation (1999),
while we calculated the specific mass balance sensitivity over a period of 5 years
(1995-2000). For comparison, Oerlemans (2000b, 2001) found a mass balance
sensitivity of –0.41 m w.e. a−1 for both the Rhone glacier and Hintereisferner
and Greuell and Böhm (1998) calculated a sensitivity of –0.90 m w.e. a−1 for the
Pasterze after a positive change in the air temperature of 1 ◦C. Furthermore,
Klok and Oerlemans (2004) found a mass balance sensitivity to temperature
perturbations of –0.59 m w.e. a−1 per K and a sensitivity to precipitation per-
turbations of 0.17 m w.e. a−1 per 10%. Clearly, the mass balance variations
after a change in the precipitation by 10% are much smaller than the response
to a perturbation of the temperature by 1 ◦C. The effect of a 1 ◦C temperature
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Fig. 4.27: Mass balance sensitivity to perturbations of the temperature (red) and the
precipitation (black). The yearly mean mass balance sensitivity (m w.e. a−1) is calculated
over the period from 1 October 1995 to 30 September 2000.

rise is counteracted by a 45% increase in the amount of precipitation.
Figure 4.27 shows the sensitivity of the mass balance to climatic variations

as a function of height. Air temperature sensitivities are largest in the ablation
zone, since the length of the ’snow-free’ period is affected by the air tempera-
ture. In the accumulation zone, atmospheric temperature perturbations have
a small impact on the mass balance, since snow is present all year long. The
precipitation sensitivity of the mass balance gradually increases with height in
most regions, since the absolute perturbation of the amount of snowfall is larger
at greater altitudes. A peak in the precipitation and air temperature sensitivity
is found around 2900 m a.s.l., because the precipitation variations cause the
equilibrium line to shift upward or downward, which has a major impact on
the mass balance in these regions, as explained in section 4.1. Figure 4.27 also
shows that the altitude of the peak in the mass balance sensitivity is dependent
on the sign and magnitude of the temperature perturbation. The variations in
the altitude of this peak are related to changes in the equilibrium line altitude.
The previously mentioned nonlinearity in the mass balance response can be ex-
plained by this shift of the equilibrium line, since it marks the extent of the
ablation zone and the mass balance is mainly sensitive to temperature varia-
tions in the area below the equilibrium line. In other words, if the extent of the
ablation zone increases after a positive temperature perturbation then the net
mass balance will be affected more strongly than in case of an ablation zone
retaining its original size.
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Chapter 5

Conclusion & discussion

A snow model has been coupled to a surface energy balance model in order to
simulate the mass balance of the Morteratsch glacier for the period from 1983
to 2008. The energy balance model is developed along the lines presented by
Klok and Oerlemans (2002). The snow model, based on a routine described by
Greuell and Konzelmann (1994), is implemented to calculate subsurface profiles
of temperature, density and water content after simulating storage, refreezing
and runoff of melt and rain water below the surface. Refreezing of the available
amount of water adds mass to the interior of the glacier and raises subsurface
temperatures and densities, thereby affecting the amount of melt by means of
the subsurface heat flux. The snow model in this study is more advanced than
the simplified snow model used by Klok and Oerlemans (2002), which, most
importantly, discounted the process of refreezing.

Measurements of climate variables around the glacier were used to determine
the model input on the grid. Observations of melt, snow properties, radiative
fluxes and climate variables on the glacier were adopted for calibration and
validation of the model results. Several model parameters have been adjusted in
order to match the calculated mass balance and snow properties to observations.
After this tuning, the modeled and measured mass balance agreed reasonably
well. Discrepancies are most likely caused by uncertainties in the albedo, wind-
driven snow drift and the geographic location of the measurement sites. In the
model, measurement sites on the glacier are assumed to be at a fixed geographic
location. However, in reality, these stations move with the glacier and are
displaced upstream to their original geographic location every 2 to 3 years.
The resulting deviations are currently not accounted for by the model. Using
GPS-data from the measurement sites on the glacier would allow for dynamic
positioning of the stations in the model. High time-resolution observations of
the wind speed and direction to study the evolution of the wind pattern would
allow for more accurate simulation of processes like wind-driven snow drift.

The net mass balance from 1983 to 2007 is –0.78 m w.e. per year, with a mean
altitudinal gradient of the mass balance of 0.006 m w.e. a−1 m−1. Refreezing of
water below the surface contributes on average 0.41 m w.e. per year to the mass
balance, which corresponds to 48% of the mean snow accumulation. The major
contribution of refreezing to the mass budget is found around the equilibrium
line altitude. Internal accumulation below the previous year’s end-of-summer
surface contributes 0.04 m w.e. a−1 to the mass budget, which is equal to about
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3.5% of the mean accumulation by refreezing and snow fall. The model by Klok
and Oerlemans (2002) uses a different parameter set-up, which compensates for
unconsidered effects like refreezing on the mass balance. Applying the parameter
set-up by Klok and Oerlemans (2002) to the model in this study therefore leads
to an overestimation of the mass balance.

Parameter sensitivity experiments show a strong sensitivity of the mass bal-
ance to perturbations in the albedo parameters. The used albedo parameteri-
zation by Oerlemans and Knap (1998) accounts for snow aging, but does not
depend on the air or snow temperature or the water content, which leads to
an overestimation of the albedo of melting snow. Measurements of shortwave
fluxes show a clear decrease of the albedo of ice since 2002 as a result of debris
deposition (Oerlemans et al., 2009), which has an impact on the mass balance
at the tongue, similar to the effect of a 1.4 ◦C temperature rise. Currently, a
limited understanding of the distribution and evolution of debris concentrations
on the glacier complicates accurate simulation of the ice albedo. The sensitivity
of the mass balance to perturbations in the subsurface parameters is found to
be small.

Climate sensitivity experiments show that an air temperature deviation of
1 ◦C causes a shift in the specific mass balance of about 0.63 m w.e. a−1, while
a deviation of the precipitation of 10% results in a change of the mass balance
of about 0.16 m w.e. a−1.

A discrepancy between modeled and measured outgoing longwave fluxes was
found, corresponding to a mean underestimation of the surface temperature of
1.7 ◦C, with largest deviations during wintertime. The turbulent fluxes have a
major impact on the surface temperature, especially in winter, as shown with
the sensitivity experiments. Assuming that all the significant energy fluxes are
contained in the model, this underestimation of the surface temperature can
be to a large extent ascribed to an underestimation of turbulent transport. A
comparison with eddy correlation measurements of the turbulent fluxes is needed
to verify this.

Snow temperatures and densities are strongly affected by refreezing of water
below the surface. The mean underestimation of the snow temperatures of 3.7
◦C during the accumulation season is most likely the result of the low surface
temperatures. More frequent snow temperature and density measurements are
needed to validate the results of the snow model. E.g. the scarceness of these
data complicates the validation of the simulated impact of refreezing on the
snow temperature and density.

The cloud cover estimates, derived from insolation measurements at Cor-
vatsch are uncertain and do not capture daily variations. A different method to
improve the accuracy of the estimated cloud fraction is therefore desirable.

Water transport between neighboring grid cells is not considered by the
model. Instead, a certain fraction of the slush water below the surface runs
off every time-step, depending on the slope of the grid cell. Simulation of melt
water tracks would help to determine the evolution of the slush water content
of the grid cells more accurately. However, simulating these melt water tracks
is complicated by the absence of a detailed topography of the glacier surface.
Crevasses and local variations in the slope determine to a large extent the di-
rection of the flow. Furthermore, the depth-dependence of the runoff rate is not
fully understood yet.

In the future, this coupled snow and energy balance model could be applied
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to other glaciers to assess the impact of subsurface processes on the mass bal-
ance. It could be useful to couple a snow model with a higher vertical resolution
(more layers) to a surface energy balance model to investigate the evolution of
the density, temperature and water content of the snow pack in more detail in
order to gain more insight in the impact of subsurface processes, like refreezing,
on the mass balance.
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